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Abstract

Representation theorems are established for fixed points of adjoint functors between categories enriched in a small
quantaloid. In a very general setting these results set up a common framework for representation theorems of concept
lattices in formal concept analysis (FCA) and rough set theory (RST), which not only extend the realm of formal
contexts to multi-typed and multi-valued ones, but also provide a general approach to construct various kinds of
representation theorems. Besides incorporating several well-known representation theorems in FCA and RST as well
as formulating new ones, it is shown that concept lattices in RST can always be represented as those in FCA through
relative pseudo-complements of the given contexts, especially if the contexts are valued in a non-Girard quantaloid.
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1. Introduction

This paper aims to establish general representation theorems for fixed points of adjoint functors between categories
enriched in a small quantaloid Q, which set up a common framework for representation theorems of concept lattices
in formal concept analysis (FCA) [4, 6] and rough set theory (RST) [17, 18] in the generality of their Q-version.
As Galois connections between posets are precisely adjoint functors between categories enriched in the two-element
Boolean algebra 2, we start the introduction from this classical case.

A Galois connection [4] s a t between posets C, D consists of monotone maps s : C −→ D, t : D −→ C such that
s(x) ≤ y ⇐⇒ x ≤ t(y) for all x ∈ C, y ∈ D. By a fixed point of s a t is meant an element x ∈ C with x = ts(x) or,
equivalently, an element y ∈ D with y = st(y), since

Fix(ts) := {x ∈ C | x = ts(x)} and Fix(st) := {y ∈ D | y = st(y)}

are isomorphic posets with the inherited order from C and D, respectively. As the first main result of this paper, the
following theorem characterizes those posets representing Fix(ts) � Fix(st):

Theorem 1.1. Let s a t : D −→ C be a Galois connection between posets. A poset X is isomorphic to Fix(ts) if, and
only if, there exist surjective maps l : C −→ X and r : D −→ X such that

∀c ∈ C,∀d ∈ D : s(c) ≤ d in D ⇐⇒ l(c) ≤ r(d) in X.

It is well known that if C, D are complete lattices, then so is Fix(ts) � Fix(st). In this case, the above representation
theorem can be strengthened to the following one, which is our second main result, in terms of

∨
-dense and

∧
-dense

maps:
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Theorem 1.2. Let s a t : D −→ C be a Galois connection between complete lattices. A complete lattice X is
isomorphic to Fix(ts) if, and only if, there exist

∨
-dense maps f : A −→ X, k : A −→ C and

∧
-dense maps

g : B −→ X, h : B −→ D such that

∀a ∈ A,∀b ∈ B : sk(a) ≤ h(b) in D ⇐⇒ f (a) ≤ g(b) in X.
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These two theorems play the role of general representation theorems and their power will be revealed when being
applied to concept lattices. To see this, recall that given a relation ϕ : A //◦ B between sets (usually called a formal
context, or context for short, and written as (A, B, ϕ) in FCA and RST), there are two Galois connections

ϕ↑ a ϕ
↓ : (2B)op −→ 2A and ϕ∗ a ϕ∗ : 2A −→ 2B (1.i)

given by
ϕ↑(U) = {y ∈ B | ∀x ∈ U : xϕy}, ϕ↓(V) = {x ∈ A | ∀y ∈ V : xϕy},
ϕ∗(V) = {x ∈ A | ∃y ∈ V : xϕy}, ϕ∗(U) = {y ∈ B | ∀x ∈ A : xϕy =⇒ x ∈ U}

for all U ⊆ A, V ⊆ B; the complete lattices consisting of their fixed points,

Mϕ := Fix(ϕ↓ϕ↑) and Kϕ := Fix(ϕ∗ϕ∗),

are respectively (up to isomorphism) the concept lattices of the context (A, B, ϕ) in FCA and RST2. The fundamental
theorem of FCA characterizes those complete lattices representing Mϕ:

Theorem 1.3. (See [4, 6].) A complete lattice X is isomorphic to Mϕ if, and only if, there exist a
∨

-dense map
f : A −→ X and a

∧
-dense map g : B −→ X such that

∀a ∈ A, ∀b ∈ B : aϕb ⇐⇒ f (a) ≤ g(b) in X.

The following diagrams explain how one derives the above theorem from 1.1 and 1.2:
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Explicitly, for the “only if” part of Theorem 1.3 it suffices to consider X = Mϕ; one has a
∨

-dense map {-}A :
A −→ 2A sending each x ∈ A to the singleton set {x} ⊆ A whose composition with l : 2A −→ Mϕ from Theorem 1.1
gives the required

∨
-dense map f : A −→ Mϕ, and the

∧
-dense map g : B −→ Mϕ is constructed dually. Conversely,

for the “if” part the
∨

-dense maps f : A −→ X, {-}A : A −→ 2A and
∧

-dense maps g : B −→ X, {-}B : B −→ (2B)op

fulfill the requirements of Theorem 1.2; indeed, one may further show that the left Kan extension l : 2A −→ X of f

2Mϕ and Kϕ are also called the formal concept lattice and the object-oriented concept lattice of the context (A, B, ϕ), respectively.
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along k [16] and the right Kan extension r : (2B)op −→ X of g along h (see Subsection 4.2) satisfy the requirements of
Theorem 1.1.

As for the representation of Kϕ, since it is well known that Kϕ = M(¬ϕ) [5, 32], where ¬ϕ : B //◦ A is the
complement of the relation ϕ : A //◦ B given by

∀b ∈ B,∀a ∈ A : b(¬ϕ)a ⇐⇒ ¬(aϕb),

the following theorem easily follows from 1.3:

Theorem 1.4. A complete lattice X is isomorphic to Kϕ if, and only if, there exist a
∨

-dense map f : B −→ X and a∧
-dense map g : A −→ X such that

∀b ∈ B, ∀a ∈ A : b(¬ϕ)a ⇐⇒ f (b) ≤ g(a) in X.

As (unital) quantales are usually chosen as truth tables in fuzzy set theory, Galois connections have been extended
to the quantale-valued setting [1, 8] as well as the theories of FCA and RST [2, 3, 7, 14, 19], and all the representation
theorems stated above can be established in this general setting. Since Galois connections between quantale-valued or-
dered sets are precisely adjoint functors between quantale-enriched categories, in fact, we will present these theorems
in an even more general framework of adjoint functors between categories enriched in a small quantaloid Q.

Quantaloids [23] may be thought of as quantales with many objects; indeed, let Sup denote the symmetric
monoidal closed category of complete lattices and sup-preserving maps, then a quantale is a monoid in Sup while
a quantaloid is a category enriched in Sup. The theory of quantaloid-enriched categories (or Q-categories for short),
as an extension of quantale-enriched categories [11, 13, 15], has been developed in [9, 23, 27, 28]; the survey paper
[30] is particularly recommended as an overview of this theory for the readership of fuzzy logicians and fuzzy set
theorists.

We recall the basics of quantaloid-enriched categories in Section 2 and present Kan extensions and (co)dense
Q-functors as our key tools in Section 4. Under this general framework, Sections 3 and 5 are respectively devoted to
establishing our main results, Theorems 1.1 and 1.2, in the generality of their Q-version:

• Theorem 3.3: Let S a T : D −→ C be an adjunction in Q-Cat. A Q-category X is equivalent to Fix(TS ) if, and
only if, there exist essentially surjective Q-functors L : C −→ X and R : D −→ X with D(S−,−) = X(L−,R−).

• Theorem 5.1: Let S a T : D −→ C be an adjunction between complete Q-categories. Then a complete Q-
category X is equivalent to Fix(TS ) if, and only if, there exist dense Q-functors F : A −→ X, K : A −→ C and
codense Q-functors G : B −→ X, H : B −→ D with D(S K−,H−) = X(F−,G−).
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In fact, Theorems 1.1 and 1.2 are respectively special cases of Corollary 3.5 and Theorem 7.3 when Q = 2, which
will be shown later as immediate consequences of Theorems 3.3 and 5.1.

The applications of the general representation theorems in FCA and RST are discussed in Section 6. Note that
distributors between Q-categories (or Q-distributors for short) generalize relations between sets in the sense that a
Q-distributor may be thought of as a multi-typed and multi-valued relation which respects the Q-categorical structures
in its domain and codomain. Thus, Q-distributors may be considered as multi-typed and multi-valued contexts upon
which a general theory of FCA and RST can be established (see [24, Section 4] for instance).

Explicitly, each Q-distributor ϕ : A //◦ B induces two pairs of adjoint Q-functors between the (co)presheaf
Q-categories of A and B, i.e.,

ϕ↑ a ϕ
↓ : P†B −→ PA and ϕ∗ a ϕ∗ : PA −→ PB,
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called respectively the Isbell adjunction and Kan adjunction [26] induced by ϕ, whose fixed points constitute complete
Q-categories Mϕ and Kϕ, respectively. As our notations already suggest, Isbell adjunctions and Kan adjunctions in-
duced by Q-distributors present the Q-categorical version of the Galois connections (1.i) in FCA and RST. Therefore,
for a Q-distributor ϕ : A //◦ B, Mϕ and Kϕ may be respectively viewed as “concept lattices” of the multi-typed and
multi-valued context (A,B, ϕ) in FCA and RST.

Although it is straightforward to extend Theorem 1.3 to the Q-version (see Theorem 6.5), the validity of Theorem
1.4 relies heavily on the fact that 2, as a Boolean algebra, satisfies the law of double negation, which guarantees the
existence of the complement ¬ϕ. For a quantaloid Q, the existence of ¬ϕ requires Q to be a Girard quantaloid [22]
(an extension of Girard quantales [21, 33]). In fact, it is impossible to extend Theorem 1.4 directly to the Q-version
without assuming Q being Girard: as Lai-Zhang revealed in the case that Q is a commutative integral quantale3 (see
[14, Proposition 5.5]), in general a codense Q-functor A −→ Kϕmay not even exist! This observation can be extended
to a quantaloid Q with some mild assumptions (Proposition 6.10), which reveals that even the existence of codense
Q-functors A −→ PA would require Q to be Girard.

Hence, for a general quantaloid Q, in order to apply Theorem 5.1 to Kϕ, one needs to find a non-trivial codense Q-
subcategory of PA which would unavoidably have a larger size than A. To this end, we construct a Q-subcategory A of
PA consisting of all the possible relative pseudo-complements of representable copresheaves on A. Then, by defining
the Q-distributor A. : A //◦ A as the codomain restriction of the graph of the Yoneda embedding (YA)\ : A //◦ PA,
one has the relative pseudo-complement

ϕ. := A. ↙ ϕ

of any Q-distributor ϕ : A //◦ B with respect to A., through which the precise condition of a complete Q-category
representing Kϕ is obtained (Theorem 6.14). Indeed, we prove

Kϕ = Mϕ. (1.ii)

in the proof of 6.14, which represents the “concept lattice” of any multi-typed and multi-valued context in RST as the
“concept lattice” of the relative pseudo-complement of the given context in FCA. Furthermore, the identity (1.ii) can
be established on the functorial level as Proposition 6.20 reveals.

Finally, Theorem 7.3 is presented in Section 7 as an elementary representation theorem for fixed points of adjoint
Q-functors in terms of order-theoretic notions, i.e.,

∨
-dense and

∧
-dense maps. By the aid of this theorem one

is able to incorporate Bělohlávek’s representation theorem for concept lattices of quantale-valued contexts in FCA
[3, Theorem 14(2)] and Popescu’s representation theorem for those in RST [19, Proposition 7.3] into our general
framework (see Corollary 7.9 and Remark 7.10). In fact, their results are extended to the quantaloid-enriched version
(Theorems 7.7 and 7.8) which outline the difference between the representations of Mϕ and Kϕ; as Corollary 7.9
shows, this subtle distinction could easily be ignored when Q is a quantale.

2. Quantaloid-enriched categories

A quantaloid [23] Q is a locally ordered 2-category whose hom-sets are complete lattices such that the composi-
tion ◦ of arrows preserves joins in each variable. The corresponding adjoints induced by the compositions

− ◦ u a − ↙ u : Q(p, r) −→ Q(q, r),
v ◦ − a v↘ − : Q(p, r) −→ Q(p, q)

satisfy
v ◦ u ≤ w ⇐⇒ v ≤ w↙ u ⇐⇒ u ≤ v↘ w

for all Q-arrows u : p −→ q, v : q −→ r, w : p −→ r, where the operations↙,↘ are called left and right implications
in Q, respectively.

Unless otherwise specified, throughout this paper Q denotes a small quantaloid with a set Q0 of objects and a set
Q1 of arrows. The identity Q-arrow on q ∈ Q0 will be denoted by 1q.

3An integral quantale is a unital quantale in which the unit is the top element of the quantale.
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Considering Q0 as a “base” set, a Q-typed set is a set A equipped with a map |-| : A −→ Q0 sending each x ∈ A to
its type |x| ∈ Q0. A map F : A −→ B between Q-typed sets is type-preserving if |x| = |Fx| for all x ∈ A. Q-typed sets
and type-preserving maps constitute the slice category Set ↓ Q0.

A Q-category A consists of a Q-typed set A0 and hom-arrows A(x, y) ∈ Q(|x|, |y|) for all x, y ∈ A0 such that
1|x| ≤ A(x, x) and A(y, z) ◦ A(x, y) ≤ A(x, z) for all x, y, z ∈ A0. A Q-category B is a Q-subcategory of A if B0 ⊆ A0
and B(x, y) = A(x, y) for all x, y ∈ B0.

Each Q-category A admits a natural underlying (pre)order on A0 given by x ≤ y if |x| = |y| and 1|x| ≤ A(x, y). A
Q-category A is separated (or skeletal) if x � y (i.e., x ≤ y and y ≤ x) implies x = y for all x, y ∈ A0.

A Q-distributor ϕ : A //◦ B between Q-categories is given by a family of Q-arrows {ϕ(x, y) : |x| −→ |y|}x∈A0,y∈B0

such that B(y, y′) ◦ ϕ(x, y) ◦ A(x′, x) ≤ ϕ(x′, y′) for all x, x′ ∈ A0, y, y′ ∈ B0. With the pointwise local order inherited
from Q, Q-categories and Q-distributors constitute a (large) quantaloid Q-Dist in which

ψ ◦ ϕ : A //◦ C, (ψ ◦ ϕ)(x, z) =
∨
y∈B0

ψ(y, z) ◦ ϕ(x, y),

ξ ↙ ϕ : B //◦ C, (ξ ↙ ϕ)(y, z) =
∧
x∈A0

ξ(x, z)↙ ϕ(x, y),

ψ↘ ξ : A //◦ B, (ψ↘ ξ)(x, y) =
∧
z∈C0

ψ(y, z)↘ ξ(x, z)

for Q-distributors ϕ : A //◦ B, ψ : B //◦ C, ξ : A //◦ C; the identity Q-distributor on A is given by hom-arrows
A : A //◦ A.

A Q-functor F : A −→ B between Q-categories is a type-preserving map F : A0 −→ B0 with A(x, x′) ≤
B(Fx, Fx′) for all x, x′ ∈ A0. With the pointwise (pre)order of Q-functors given by

F ≤ G : A −→ B ⇐⇒ ∀x ∈ A0 : Fx ≤ Gx ⇐⇒ ∀x ∈ A0 : 1|x| ≤ B(Fx,Gx),

Q-categories and Q-functors constitute a 2-category Q-Cat.

Remark 2.1. The dual of a Q-category A is a Qop-category4, given by Aop
0 = A0 and Aop(x, y) = A(y, x) for all

x, y ∈ A0. Each Q-functor F : A −→ B becomes a Qop-functor Fop : Aop −→ Bop with the same mapping on
objects but (F′)op ≤ Fop whenever F ≤ F′ : A −→ B. Each Q-distributor ϕ : A //◦ B corresponds bijectively to a
Qop-distributor ϕop : Bop //◦ Aop with ϕop(y, x) = ϕ(x, y) for all x ∈ A0, y ∈ B0. Therefore, as already noted in [27],
one has a 2-isomorphism

(−)op : Q-Cat � (Qop-Cat)co (2.i)

and an isomorphism of quantaloids
(−)op : Q-Dist � (Qop-Dist)op, (2.ii)

where “co” refers to reversing order in hom-sets.

Each Q-functor F : A −→ B induces a pair of Q-distributors given by

F\ : A //◦ B, F\(x, y) = B(Fx, y) and F\ : B //◦ A, F\(y, x) = B(y, Fx),

called respectively the graph and cograph of F, which form an adjunction F\ a F\ in the 2-category Q-Dist, i.e.,
A ≤ F\ ◦ F\ and F\ ◦ F\ ≤ B. It is easy to see

F ≤ G : A −→ B ⇐⇒ G\ ≤ F\ : A //◦ B ⇐⇒ F\ ≤ G\ : B //◦ A, (2.iii)

and therefore
(−)\ : Q-Cat −→ (Q-Dist)co, (−)\ : Q-Cat −→ (Q-Dist)op (2.iv)

are both 2-functors.
It is straightforward to verify the following propositions:

4The terminologies adopted here are not exactly the same as in the references [27, 28, 29, 30]: Our Q-categories are exactly Qop-categories in
the sense of Stubbe.
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Proposition 2.2. For any Q-distributor ϕ : A //◦ B and Q-functors F : X −→ A, G : Y −→ B,

ϕ(F−,G−) = G\ ◦ ϕ ◦ F\ = G\ ↘ (ϕ↙ F\).

Proposition 2.3. (See [26].) Let F : A −→ B be a Q-functor.

(1) A = F\ ◦ F\ if, and only if, F is fully faithful in the sense that A(x, y) = B(Fx, Fy) for all x, y ∈ A0.
(2) If F is essentially surjective in the sense that there exists x ∈ A0 with Fx � y for all y ∈ B0, then F\ ◦ F\ = B.

Proposition 2.4. (See [9].) The following identities hold for all Q-functors F and Q-distributors ϕ, ψ whenever the
operations make sense:

(1) ϕ ◦ F\ = ϕ↙ F\, F\ ◦ ϕ = F\ ↘ ϕ.
(2) (F\ ◦ ϕ)↘ ψ = ϕ↘ (F\ ◦ ψ), (ψ ◦ F\)↙ ϕ = ψ↙ (ϕ ◦ F\).
(3) (ϕ↘ ψ) ◦ F\ = ϕ↘ (ψ ◦ F\), F\ ◦ (ψ↙ ϕ) = (F\ ◦ ψ)↙ ϕ.
(4) F\ ◦ (ϕ↘ ψ) = (ϕ ◦ F\)↘ ψ, (ψ↙ ϕ) ◦ F\ = ψ↙ (F\ ◦ ϕ).

A Q-functor F : A −→ B is an equivalence (resp. isomorphism) of Q-categories if there exists a Q-functor
G : B −→ A with GF � 1A and FG � 1B (resp. GF = 1A and FG = 1B), where 1A and 1B respectively denote the
identity Q-functors on A and B. In this case, we write A ' B (resp. A � B) to denote that A and B are equivalent
(resp. isomorphic) Q-categories.

Proposition 2.5. (See [27].) A Q-functor is an equivalence (resp. isomorphism) of Q-categories if, and only if, it is
fully faithful and essentially surjective (resp. fully faithful and bijective).

A pair of Q-functors F : A −→ B, G : B −→ A forms an adjunction F a G : B −→ A in Q-Cat if 1A ≤ GF and
FG ≤ 1B. It is easy to obtain the following equivalent characterizations of adjoint Q-functors:

Proposition 2.6. (See [27].) Let F : A −→ B, G : B −→ A be a pair of Q-functors. Then

F a G in Q-Cat ⇐⇒ F\ = G\ ⇐⇒ G\ a F\ in Q-Dist ⇐⇒ G\ a F\ in Q-Dist.

3. Fixed points of adjoint Q-functors and their representation

For a Q-functor F : A −→ A, an object x ∈ A0 is a fixed point of F if Fx � x, and we denote by Fix(F) the
Q-subcategory of A consisting of fixed points of F.

A Q-closure operator [26] on a Q-category A is a Q-functor F : A −→ A with 1A ≤ F and FF � F.

Proposition 3.1. (See [26].) For each Q-closure operator F : A −→ A, the inclusion Q-functor Fix(F) �
�
// A is

right adjoint to the codomain restriction F : A −→ Fix(F).

Remark 3.2. In the language of category theory, a Q-closure operator F : A −→ A is a Q-monad on A (note that the
“Q-natural transformation” between Q-functors is simply given by the local order in Q-Cat), and objects in Fix(F)
are precisely Eilenberg-Moore algebras of this Q-monad.

Dually, Q-interior operators correspond bijectively to Qop-closure operators under the isomorphism (2.i) in Re-
mark 2.1; that is, Q-functors F : A −→ A with F ≤ 1A and FF � F. The dual of Proposition 3.1 states precisely
that for each Q-interior operator F : A −→ A, the inclusion Q-functor Fix(F) �

�
// A is left adjoint to the codomain

restriction F : A −→ Fix(F).
Each adjunction S a T : D −→ C in Q-Cat gives rise to a Q-closure operator TS : C −→ C and a Q-interior

operator S T : D −→ D. It is easy to see that the restrictions of S and T ,

S : Fix(TS ) −→ Fix(S T ) and T : Fix(S T ) −→ Fix(TS ),

establish an equivalence of Q-categories, thus objects in both Fix(TS ) and Fix(S T ) will be referred to as fixed points
of the adjoint Q-functors S a T . The following theorem describes those Q-categories which represent the fixed points
of S a T :

6



Theorem 3.3. Let S a T : D −→ C be an adjunction in Q-Cat. A Q-category X is equivalent to Fix(TS ) if, and only
if, there exist essentially surjective Q-functors L : C −→ X and R : D −→ X with S \ = R\ ◦ L\.

C
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��

C D
S // D

X

R

��

DC
T

oo ⊥ C

X

L\
��

C D
S \=T \

// D

X

??

R\
◦ ◦

◦

Proof. Necessity. It suffices to prove the case X = Fix(TS ). Let L : C −→ Fix(TS ) and R : D −→ Fix(TS ) be the
codomain restriction of TS : C −→ C and T : D −→ C, respectively, then L and R are clearly essentially surjective
and satisfy

S \ = (S TS )\ (S a T )

= T \ ◦ (TS )\ (S a T and Proposition 2.6)
= C(TS−,T−) (Proposition 2.2)
= Fix(TS )(L−,R−)

= R\ ◦ L\. (Proposition 2.2)

Sufficiency. We show that the restriction L′ : Fix(TS ) −→ X of L is an equivalence of Q-categories.
First, LT � R and RS � L. Indeed, by Propositions 2.3(2) one has

R\ = R\ ◦ L\ ◦ L\ = S \ ◦ L\ = T \ ◦ L\ = (LT )\ and L\ = R\ ◦ R\ ◦ L\ = R\ ◦ S \ = (RS )\.

Thus the conclusion follows from (2.iii).
Second, L′ is fully faithful since for all c, c′ ∈ Fix(TS ),

X(L′c, L′c′) = X(Lc, LTS c′) (c′ � TS c′)
= X(Lc,RS c′) (LT � R)

= S \(c, S c′) (S \ = R\ ◦ L\ = X(L−,R−))

= T \(c, S c′) (T \ = S \)
= C(c,TS c′)
= Fix(TS )(c, c′). (c′ � TS c′)

Finally, L′ is essentially surjective since for any c ∈ C0, RS � L and S a T imply

Lc � RS c � RS TS c � L(TS c) = L′(TS c). (3.i)

Hence the essential surjectivity of L : C −→ X implies that of L′, completing the proof.

From (3.i) in the above proof one sees that L, up to isomorphism, is the composition of an equivalence L′ :
Fix(TS ) −→ X and a left adjoint TS : C −→ Fix(TS ) (see Proposition 3.1), thus L itself must be a left adjoint in
Q-Cat. Similarly one may deduce that R is a right adjoint in Q-Cat:

Corollary 3.4. The Q-functors L and R in Theorem 3.3 are respectively a left adjoint and a right adjoint in Q-Cat.

The condition given in Theorem 3.3 can be weakened as in the following corollary since the Q-functoriality of L
and R is self-contained:

Corollary 3.5. Let S a T : D −→ C be an adjunction in Q-Cat. A Q-category X is equivalent to Fix(TS ) if, and only
if, there exist essentially surjective type-preserving maps L : C0 −→ X0 and R : D0 −→ X0 with S \ = X(L−,R−).
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Proof. For all c, c′ ∈ C0, let b ∈ D0 with Rb � Lc′ and one has

C(c, c′) ≤ X(Lc′, Lc′) ◦ C(c, c′)
= X(Lc′,Rb) ◦ C(c, c′) (Rb � Lc′)

= C(c′,Tb) ◦ C(c, c′) (T \ = S \ = X(L−,R−))
≤ C(c,Tb)

= X(Lc,Rb) (T \ = S \ = X(L−,R−))
= X(Lc, Lc′), (Rb � Lc′)

showing that L is a Q-functor, and the Q-functoriality of R can be proved similarly.

It is readily seen that Corollary 3.5 reduces to Theorem 1.1 when Q = 2. However, in general the Q-categories C
and D may be too “large” to compute whether a Q-category X is equivalent to Fix(TS ), and one would wish to find
Q-categories with smaller size than C and D which are able to generate the required Q-functors L : C −→ X and
R : D −→ X. A natural way is through dense and codense Q-functors introduced in the next section.

4. Weighted (co)limits, Kan extensions and (co)dense Q-functors

4.1. Weighted (co)limits in Q-categories
For each q ∈ Q0, Let {q} denote the discrete Q-category with only one object q such that |q| = q and {q}(q, q) = 1q.

A presheaf with type q on a Q-category A is a Q-distributor µ : A //◦ {q}. Presheaves on A constitute a Q-category
PA with

PA(µ, µ′) = µ′ ↙ µ

for all µ, µ′ ∈ PA. Dually, the Q-category P†A of copresheaves on A consists of Q-distributors λ : {q} //◦ A as
objects with type q and

P†A(λ, λ′) = λ′ ↘ λ

for all λ, λ′ ∈ P†A. It is easy to see P†A � (PAop)op as remarked in 2.1.

Remark 4.1. The underlying order of P†A is precisely the reverse local order in Q-Dist; that is, µ ≤ λ in the
underlying order of P†A if and only if λ ≤ µ in Q-Dist. In order to avoid confusion, we make the convention that
the symbol ≤ between Q-distributors always refer to the local order in Q-Dist. Moreover, while

∨
and

∧
are used as

generic symbols for joins and meets, we write
⊔

and
d

instead for the underlying joins and meets in P†A to eliminate
ambiguity.

Given a Q-category A, the Yoneda embedding YA : A −→ PA sends each x ∈ A0 to A(−, x) ∈ PA, and the
co-Yoneda embedding Y†A : A −→ P†A sends each x ∈ A0 to A(x,−) ∈ P†A. Both YA and Y†A are fully faithful
Q-functors as the following Yoneda lemma implies:

Lemma 4.2 (Yoneda). (See [27].) Let A be a Q-category and µ ∈ PA, λ ∈ P†A. Then

µ = PA(YA−, µ) = (YA)\(−, µ), λ = P†A(λ,Y†A−) = (Y†A)\(λ,−).

Given a Q-functor F : X −→ A, the colimit of F weighted by a presheaf µ ∈ PX is an object colimµ F ∈ A0 of
type |µ| such that

A(colimµF,−) = F\ ↙ µ. (4.i)

In particular, supA µ := colimµ1A, when it exists, is called the supremum of µ ∈ PA, which satisfies

A(supAµ,−) = A↙ µ. (4.ii)

Dually, the limit of F : X −→ A weighted by a copresheaf λ ∈ P†X is defined as limλ F = colimλop Fop; that is, an
object limλ F ∈ A0 of type |λ| such that

A(−, limλF) = λ↘ F\. (4.iii)

The infimum of λ ∈ P†A, when it exists, is given by infA λ := limλ 1A.

8



Proposition 4.3. (See [27].) For all Q-functors F : X −→ A and µ ∈ PX, λ ∈ P†X,

colimµF = supAF→µ and limλF = infAF→7 λ,

where the Q-functors F→ : PX −→ PA and F→7 : P†X −→ P†A are given by

F→µ = µ ◦ F\ and F→7 λ = F\ ◦ λ.

A Q-category A is complete if it satisfies one of the equivalent conditions in the following theorem. In particular,
PA and P†A are both separated complete Q-categories.

Theorem 4.4. (See [27].) For any Q-category A, the following conditions are equivalent:

(i) A admits all weighted colimits.
(ii) A admits all weighted limits.

(iii) Every µ ∈ PA has a supremum.
(iv) Every λ ∈ P†A has an infimum.
(v) YA has a left adjoint supA : PA −→ A in Q-Cat.

(vi) Y†A has a right adjoint infA : P†A −→ A in Q-Cat.

It is well known that fixed points of a Q-closure operator or Q-interior operator on a complete Q-category consti-
tute a complete Q-category:

Proposition 4.5. (See [26].) Let F : A −→ A be a Q-closure operator (resp. Q-interior operator) on a complete
Q-category A. Then Fix(F) is also a complete Q-category.

4.2. Kan extensions of Q-functors

Given Q-functors K : A −→ B and F : A −→ C, the (pointwise) left Kan extension [27] of F along K, when it
exists, is given by

LanK F : B −→ C, (LanK F)b = colimK\(−,b)F. (4.iv)

Remark 4.6. The (non-pointwise) left Kan extension of F : A −→ C along K : A −→ B, when it exists, is a
Q-functor LanK F : B −→ C with

LanK F ≤ S ⇐⇒ F ≤ S K (4.v)

for all Q-functors S : B −→ C. It is easy to see that pointwise left Kan extensions defined by (4.iv) always satisfy
(4.v), but not vice versa. All Kan extensions considered in this paper are pointwise.

Dually, the (pointwise) right Kan extension of F along K is given by

RanK F = (LanKop Fop)op : B −→ C, (RanK F)b = limK\(b,−)F. (4.vi)

From Equations (4.i) and (4.iii) one soon has the following characterization of Kan extensions:

Proposition 4.7. G : B −→ C is the left (resp. right) Kan extension of F : A −→ C along K : A −→ B if, and only if,

G\ = F\ ↙ K\ (resp. G\ = K\ ↘ F\).

From Proposition 4.7 one may derive several useful formulas regarding to Kan extensions:

Proposition 4.8. (1) For any Q-functor F : A −→ B, F � Lan1A F � Ran1A F.
(2) For Q-functors F : A −→ C, F′ : A −→ C′, G : B −→ C, G′ : B −→ C′, K : A −→ X, H : B −→ Y,

(RanH G)\ ◦ (LanK F)\ = (RanH G′)\ ◦ (LanK F′)\

whenever G\ ◦ F\ = G′\ ◦ F′\ and LanK F, LanK F′, RanH G and RanH G′ exist.
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Proof. (1) is trivial. For (2), note that

(RanH G)\ ◦ (LanK F)\ = (H\ ↘ G\) ◦ (LanK F)\ (Proposition 4.7)

= H\ ↘ (G\ ◦ (LanK F)\) (Proposition 2.4(3))

= H\ ↘ (G\ ◦ (F\ ↙ K\)) (Proposition 4.7)

= H\ ↘ ((G\ ◦ F\)↙ K\), (Proposition 2.4(3))

and similarly one has (RanH G′)\ ◦ (LanK F′)\ = H\ ↘ ((G′\ ◦ F′\) ↙ K\). Thus G\ ◦ F\ = G′\ ◦ F′\ implies
(RanH G)\ ◦ (LanK F)\ = (RanH G′)\ ◦ (LanK F′)\.

The identity in Proposition 4.8(2) may be translated through Proposition 2.2 as C(F−,G−) = C′(F′−,G′−) im-
plying C((LanK F)−, (RanH G)−) = C′((LanK F′)−, (RanH G′)−) as the following diagram illustrates:

A X
K

//A

C

F

44

X

C

LanK F

::

A

C′
F′

**

X

C′

LanK F′

$$

BY
H

oo B

C

G

jj

Y

C

RanH G

dd

B

C′
G′

tt

Y

C′

RanH G′

zz

If LanK F : B −→ C (resp. RanK F : B −→ C) exists, a Q-functor H : C −→ D is said to preserve LanK F (resp.
RanK F) if LanK HF (resp. RanK HF) exists and is isomorphic to H LanK F (resp. H RanK F). LanK F (resp. RanK F)
is absolute if it is preserved by any Q-functor with domain C. The following characterization of adjoint Q-functors
appeared in [27] in terms of non-pointwise Kan extensions, and here we strengthen it to the pointwise version:

Proposition 4.9. Let F : A −→ B be a Q-functor. The following statements are equivalent:

(i) F is a left (resp. right) adjoint in Q-Cat.
(ii) LanF 1A (resp. RanF 1A) exists and is absolute.

(iii) LanF 1A (resp. RanF 1A) exists and is preserved by F.

In this case, LanF 1A : B −→ A (resp. RanF 1A : B −→ A) is the right (resp. left) adjoint of F.

Proof. (i) =⇒ (ii): If F a G, for the existence of LanF 1A it suffices to prove G � LanF 1A. Indeed, from Propositions
2.4(1) and 2.6 one has

G\ = A↙ G\ = (1A)\ ↙ F\,

and thus Proposition 4.7 guarantees G � LanF 1A. Now let H : A −→ C be any Q-functor, by applying again
Propositions 2.4(1) and 2.6 one has

(HG)\ = H\ ◦G\ = H\ ↙ G\ = H\ ↙ F\,

showing that HG � LanF H.
(ii) =⇒ (iii): Trivial.
(iii) =⇒ (i): Let G = LanF 1A, then FG � LanF F. By Proposition 4.7 one has

G\ = A↙ F\ and F\ ↙ F\ = (FG)\ = F\ ◦G\ = F\ ↙ G\,

where the last equality follows from Proposition 2.4(1). It follows that

F\ ≤ G\ ↘ A = G\ ≤ (F\ ↙ F\)↘ F\ = F\,

where the first equality follows from Proposition 2.4(1). Thus F\ = G\ and by Proposition 2.6 one has F a G.
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The following characterizations of adjoint Q-functors will be useful in the sequel:

Proposition 4.10. (See [27].) Let F : A −→ B be a Q-functor. If F is a left (resp. right) adjoint in Q-Cat, then

(1) F is cocontinuous (resp. continuous) in the sense that F colimµ G � colimµ FG (resp. F limλ G � limλ FG) for
all Q-functors G : X −→ A and µ ∈ PX (resp. λ ∈ P†X).

(2) F is sup-preserving (resp. inf-preserving) in the sense that F supA � supB F→ (resp. F infA � infB F→7 ).
(3) F preserves left (resp. right) Kan extensions of any Q-functor with codomain A.
(4) F is a left (resp. right) adjoint between the underlying ordered sets of A, B.

Moreover, if A is complete, then the following statements are equivalent:

(i) F is a left (resp. right) adjoint in Q-Cat.
(ii) F is cocontinuous (resp. continuous).

(iii) F is sup-preserving (resp. inf-preserving).
(iv) F preserves left (resp. right) Kan extensions.

4.3. (Co)dense Q-functors
A Q-functor F : A −→ B is dense [26] if for any y ∈ B0, there exists µ ∈ PA such that y � colimµ F. Dually, F is

codense if Fop is a dense Qop-functor; that is, y � limλ F for some λ ∈ P†A for any y ∈ B0.
A Q-subcategory B of A is dense (resp. codense) if the inclusion Q-functor J : B �

�
//A is dense (resp. codense).

Example 4.11. For any Q-category A, the Yoneda embedding YA : A −→ PA is dense since µ = colimµ YA for all
µ ∈ PA. Dually, the co-Yoneda embedding Y†A : A −→ P†A is codense.

We have the following equivalent characterizations of dense and codense Q-functors:

Proposition 4.12. Let F : A −→ B be a Q-functor. The following statements are equivalent:

(i) F is dense (resp. codense).
(ii) F is sup-dense (resp. inf-dense) in the sense that there exists µ ∈ PA (resp. λ ∈ P†A) with y � supB F→µ (resp.

y � infB F→7 λ) for all y ∈ B0.
(iii) Im(F) = {Fx | x ∈ A0} is a dense (resp. codense) Q-subcategory of B.
(iv) F\ ↙ F\ = B (resp. F\ ↘ F\ = B).
(v) 1B � LanF F (resp. 1B � RanF F).

Proof. (i)⇐⇒ (ii): Follows immediately from Proposition 4.3.
(ii) ⇐⇒ (iii): Since one already has (i) ⇐⇒ (ii), it suffices to show that F is sup-dense if, and only if, the

inclusion Q-functor J : Im(F) �
�
// B is sup-dense. Let G : A −→ Im(F) be the codomain restriction of F, then

obviously F = JG, and the surjectivity of G implies λ ◦G\ ◦G\ = λ for all λ ∈ P(Im(F)) by Proposition 2.3(2).
Let y ∈ B0. On one hand, if y � supB F→µ for some µ ∈ PA, then G→µ ∈ P(Im(F)) satisfies

y � supBF→µ = supBJ→G→µ.

On the other hand, if y � supB J→λ for some λ ∈ P(Im(F)), then λ ◦G\ ∈ PA satisfies

y � supBJ→λ = supBJ→(λ ◦G\ ◦G\) = supBJ→G→(λ ◦G\) = supBF→(λ ◦G\).

(i) =⇒ (iv): One may find µ ∈ PA such that y � colimµ F for any y ∈ B0. Then

B(y,−) ≤ F\ ↙ F\(−, y)
≤ (F\ ↙ F\(−, y)) ◦ B(y, y)
= (F\ ↙ F\(−, y)) ◦ (F\(−, y)↙ µ) (Equation (4.i))
≤ F\ ↙ µ

= B(y,−), (Equation (4.i))

and consequently B(y,−) = F\ ↙ F\(−, y) = (F\ ↙ F\)(y,−).
(iv) =⇒ (i): F\ ↙ F\ = B immediately implies B(y,−) = F\ ↙ F\(−, y); that is, y � colimF\(−,y) F for any y ∈ B0.
(iv)⇐⇒ (v): Follows immediately from Proposition 4.7.
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Corollary 4.13. (1) Every essentially surjective Q-functor is both dense and codense.
(2) If Q-functors F : A −→ B and G : B −→ C are both dense (resp. codense) and G is a left (resp. right) adjoint in

Q-Cat, then GF : A −→ C is dense (resp. codense).

Proof. (1) is easy. For (2), note that G\ = H\ if G a H in Q-Cat, and thus

C = G\ ↙ G\ (Proposition 4.12(iv))

= G\ ◦ (B↙ G\) (G\ = H\ and Proposition 2.4(3))
= G\ ◦ ((F\ ↙ F\)↙ G\) (Proposition 4.12(iv))
= G\ ◦ (F\ ↙ (GF)\)

= (GF)\ ↙ (GF)\, (G\ = H\ and Proposition 2.4(3))

showing that GF is dense.

5. Representation theorem in terms of (co)dense Q-functors

Now we are ready to present the second main result of this paper. If S a T : D −→ C is an adjunction between
complete Q-categories, Proposition 4.5 guarantees the completeness of Fix(TS ) ' Fix(S T ). In this case, the following
representation theorem can be established through dense and codense Q-functors:

Theorem 5.1. Let S a T : D −→ C be an adjunction between complete Q-categories. Then a complete Q-category
X is equivalent to Fix(TS ) if, and only if, there exist dense Q-functors F : A −→ X, K : A −→ C and codense
Q-functors G : B −→ X, H : B −→ D with H\ ◦ S \ ◦ K\ = G\ ◦ F\.

A

C
K

;;

B

D
H

cc

A

X
F

((

B

X
G

vv

C D
S // DC
T

oo ⊥

A

C
K\

;; C D
S \=T \

// D

B

H\

##
A

X
F\

(( X

B

G\

66

◦

◦

◦

◦ ◦

Proof. Necessity. One may find essentially surjective Q-functors L : C −→ X and R : D −→ X with S \ = R\ ◦ L\
by Theorem 3.3. Then the dense Q-functors L : C −→ X, 1C : C −→ C and the codense Q-functors R : D −→ X,
1D : D −→ D clearly satisfy R\ ◦ L\ = S \ = 1\D ◦ S \ ◦ (1C)\.

Sufficiency. The completeness of X guarantees the existence of the Kan extensions (see the definitions in (4.iv)
and (4.vi))

L := LanK F : C −→ X and R := RanH G : D −→ X.

A

C
K

55

B

D
H

ii

A

X
F

++

B

X
G

ss

C D
S // DC
T

ooC

X

L=LanK F

��

D

X

R=RanH G

��

⊥

(5.i)

We show that L and R satisfy the conditions in Theorem 3.3.
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First, LK � F and RH � G; that is, L and R are actually extensions of F and G, respectively. For this, note that

F\ = (RanG G)\ ◦ (Lan1A F)\ (Propositions 4.8(1) and 4.12(v))

= (RanG H)\ ◦ (Lan1A S K)\ (H\ ◦ S \ ◦ K\ = G\ ◦ F\ and Proposition 4.8(2))

= (RanG H)\ ◦ (S K)\ (Propositions 4.8(1))

= (RanG H)\ ◦ (S LanK K)\ ◦ K\ (Proposition 4.12(v))

= (RanG H)\ ◦ (LanK S K)\ ◦ K\ (Proposition 4.10(3))

= (RanG G)\ ◦ (LanK F)\ ◦ K\ (H\ ◦ S \ ◦ K\ = G\ ◦ F\ and Proposition 4.8(2))
= L\ ◦ K\, (Proposition 4.12(v))

and thus the conclusion follows (see (2.iii)). Similarly one may prove RH � G.
Second, L and R are essentially surjective. To this end, note that S \ = T \ implies

G\ ◦ F\ = H\ ◦ S \ ◦ K\ = H\ ◦ T \ ◦ K\ = (T H)\ ◦ K\, (5.ii)

and consequently

L\ = (RanG G)\ ◦ (LanK F)\ (Proposition 4.12(v))

= (RanG T H)\ ◦ (LanK K)\ (Equation (5.ii) and Proposition 4.8(2))

= (RanG T H)\, (Proposition 4.12(v))

where the existence of RanG T H is guaranteed by the completeness of C. Thus L a RanG T H in Q-Cat and, as
a left adjoint, L is cocontinuous (see Proposition 4.10(1)). Therefore, for any x ∈ X0 one may find µ ∈ PA with
x � colimµ F, and consequently colimµK ∈ C0 satisfies

L(colimµK) � colimµLK � colimµF � x,

where the second isomorphism follows from LK � F. Hence L is essentially surjective. Similarly one may obtain the
essential surjectivity of R by showing that R is a right adjoint in Q-Cat (with LanF S K as its left adjoint) and applying
RH � G.

Finally, S \ = R\ ◦ L\. Indeed,

S \ = (S LanK K)\ (Proposition 4.12(v))
= (LanK S K)\ (Proposition 4.10(3))

= (RanH H)\ ◦ (LanK S K)\ (Proposition 4.12(v))

= (RanH G)\ ◦ (LanK F)\ (H\ ◦ S \ ◦ K\ = G\ ◦ F\ and Proposition 4.8(2))

= R\ ◦ L\,

which completes the proof.

Theorem 5.1 paves a way towards a “good” representation of Fix(TS ) ' Fix(S T ) for a specific adjunction S a
T : D −→ C between complete Q-categories; that is, by looking for dense Q-functors into C (or equivalently, dense
Q-subcategories of C) and codense Q-functors into D (or equivalently, codense Q-subcategories of D). The power of
this theorem will be revealed in the next section for representations of concept lattices.

6. Fixed points of Isbell adjunctions and Kan adjunctions

In this section we demonstrate how the general representation theorems (3.3 and 5.1) give rise to representation
theorems of concept lattices in FCA and RST in the generality of the Q-version.
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6.1. Isbell adjunctions and Kan adjunctions
Each Q-distributor ϕ : A //◦ B induces an Isbell adjunction ϕ↑ a ϕ↓ : P†B −→ PA in Q-Cat [26] given by

ϕ↑ : PA −→ P†B, µ 7→ ϕ↙ µ,

ϕ↓ : P†B −→ PA, λ 7→ λ↘ ϕ

and a Kan adjunction ϕ∗ a ϕ∗ : PA −→ PB defined as

ϕ∗ : PB −→ PA, λ 7→ λ ◦ ϕ,

ϕ∗ : PA −→ PB, µ 7→ µ↙ ϕ.

Since P†A � (PAop)op, there is also a dual Kan adjunction ϕ† a ϕ† with

ϕ† := ((ϕop)∗)op : P†B −→ P†A, λ 7→ ϕ↘ λ,

ϕ† := ((ϕop)∗)op : P†A −→ P†B, µ 7→ ϕ ◦ µ

which corresponds to the Kan adjunction (ϕop)∗ a (ϕop)∗ : PBop −→ PAop in Qop-Cat under the isomorphism (2.i) in
Remark 2.1.

Remark 6.1. As left and right Kan extensions of Q-functors introduced in Subsection 4.2 are exactly left and right
extensions of 1-cells [12] in the 2-category Q-Cat, Kan adjunctions induced by Q-distributors in fact generalize right
extensions of 1-cells in the 2-category Q-Dist. To see this, note that the underlying Galois connection (between
the underlying ordered sets) of a Kan adjunction ϕ∗ a ϕ∗ : PA −→ PB may be described as the monotone map
“composing with ϕ”

ϕ∗ : Q-Dist(B, {q}) −→ Q-Dist(A, {q})

admitting a right adjoint
ϕ∗ : Q-Dist(A, {q}) −→ Q-Dist(B, {q})

for any q ∈ Q0, which exactly says that for any presheaf µ : A //◦ {q},

ϕ∗µ = µ↙ ϕ : B //◦ {q}

is the right extension of µ along ϕ : A //◦ B. Similarly, dual Kan adjunctions induced by Q-distributors correspond
to left extensions of 1-cells in Q-Dist.

Proposition 6.2. (See [9].) (−)∗ : (Q-Dist)op −→ Q-Cat and (−)† : (Q-Dist)co −→ Q-Cat are both 2-functorial, and
one has two pairs of adjoint 2-functors

(−)\ a (−)∗ : (Q-Dist)op −→ Q-Cat and (−)\ a (−)† : (Q-Dist)co −→ Q-Cat.

The adjunctions (−)\ a (−)∗ and (−)\ a (−)† give rise to isomorphisms

(Q-Cat)co(A,P†B) � Q-Dist(A,B) � Q-Cat(B,PA)

for all Q-categories A, B. We denote by

←−ϕ : B −→ PA, ←−ϕy = ϕ(−, y) and −→ϕ : A −→ P†B, −→ϕ x = ϕ(x,−) (6.i)

for the transposes of each Q-distributor ϕ : A //◦ B.

Proposition 6.3. (See [25, 26].) Let ϕ : A //◦ B be a Q-distributor. Then

(1) ϕ = (Y†B)\ ◦ −→ϕ \ =←−ϕ \ ◦ (YA)\,
(2) −→ϕ = ϕ↑YA = ϕ†Y†A,
(3) ←−ϕ = ϕ↓Y†B = ϕ∗YB.
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By Proposition 4.5, fixed points of the Isbell adjunction ϕ↑ a ϕ
↓ and the Kan adjunction ϕ∗ a ϕ∗ constitute

complete Q-categories

Mϕ := Fix(ϕ↓ϕ↑) = {µ ∈ PA | ϕ↓ϕ↑µ = µ} and Kϕ := Fix(ϕ∗ϕ∗) = {λ ∈ PB | ϕ∗ϕ∗λ = λ},

where are both separated since so are PA and PB.

Example 6.4. For the identity Q-distributor A : A //◦ A on a Q-category A, MA is the MacNeille completion of A
[26], and KA = PA is the free cocompletion of A [27].

With the help of Theorems 3.3 and 5.1, we arrive at the following representation theorem of Mϕ as the Q-version
of Theorem 1.3:

Theorem 6.5. (See [26].) For any Q-distributor ϕ : A //◦ B, a separated complete Q-category X is isomorphic to
Mϕ if, and only if, there exist a dense Q-functor F : A −→ X and a codense Q-functor G : B −→ X with ϕ = G\ ◦ F\.

Proof. Necessity. By Theorem 3.3 there exist surjective Q-functors L : PA −→ X and R : P†B −→ X with
(ϕ↑)\ = R\ ◦ L\. Since YA : A −→ PA is dense (Example 4.11), L is dense (Corollary 4.13(1)) and L is a left adjoint
in Q-Cat (Corollary 3.4), one deduces the density of LYA : A −→ X by Corollary 4.13(2). Similarly one can see that
RY†B : B −→ X is codense. Finally, one has

ϕ = (Y†B)\ ◦ −→ϕ \ = (Y†B)\ ◦ (ϕ↑YA)\ = (Y†B)\ ◦ R\ ◦ L\ ◦ (YA)\ = (RY†B)\ ◦ (LYA)\

by applying the formulas in Proposition 6.3.
Sufficiency. Now we have dense Q-functors YA : A −→ PA, F : A −→ X and codense Q-functors Y†B : B −→

P†B, G : B −→ X with

G\ ◦ F\ = ϕ = (Y†B)\ ◦ −→ϕ \ = (Y†B)\ ◦ (ϕ↑YA)\ = (Y†B)\ ◦ (ϕ↑)\ ◦ (YA)\

by Proposition 6.3, thus the conditions in Theorem 5.1 are satisfied. This completes the proof.

The following diagrams respectively illustrate the “only if” part and the “if” part of Theorem 6.5 (cf. Diagram
(5.i) in the proof of Theorem 5.1):

A

PA
YA

99

B

P†B
Y†B

ee

A

Mϕ
F=LYA ))

B

Mϕ
G=RY†Buu

PA P†B
ϕ↑

//
P†BPA

ϕ↓
ooPA

Mϕ

L=ϕ↓ϕ↑

��

P†B

Mϕ

R=ϕ↓

��

⊥

A

PA
YA

77

B

P†B
Y†B

gg

A

X
F

**

B

X
G

tt

PA P†B
ϕ↑

//
P†BPA

ϕ↓
ooPA

X

L=LanYA F

��

P†B

X

R=Ran
Y†B

G

��

⊥

(6.ii)

Example 6.6. For the identity Q-distributor A : A //◦ A on a Q-category A, MA is the MacNeille completion of A
(see Example 6.4). In this case, the codomain restriction YA : A −→ MA of the Yoneda embedding is dense, and the
composition A↓Y†A : A −→ P†A −→ MA is codense. It is not difficult to verify A = (A↓Y†A)\ ◦ (YA)\, which fulfills
the conditions in Theorem 6.5.

However, it is not straightforward to derive the counterpart of Theorem 6.5 for Kϕ as it is not easy to find a
non-trivial codense Q-functor into PA (or equivalently, a non-trivial codense Q-subcategory of PA) as required in
Theorem 5.1. This will be the topic of the next subsection.

6.2. Towards codense Q-subcategories of presheaf Q-categories

In a quantaloid Q, a family of Q-arrows {dq : q −→ q}q∈Q0 is a cyclic family (resp. dualizing family) if

dp ↙ u = u↘ dq (resp. (dp ↙ u)↘ dp = u = dq ↙ (u↘ dq)) (6.iii)
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for all Q-arrows u : p −→ q. A Girard quantaloid [22] is a quantaloid Q equipped with a cyclic dualizing family of
Q-arrows. In this case, the complement of a Q-arrow u : p −→ q can be defined as

¬u = dp ↙ u = u↘ dq : q −→ p,

which clearly satisfies ¬¬u = u. For each Q-category A,

(¬A)(y, x) = ¬A(x, y)

gives a Q-distributor ¬A : A //◦ A, and it is straightforward to check that

{¬A : A //◦ A}A∈ob(Q-Dist)

is a cyclic dualizing family of Q-Dist; this gives the “only if” part of the following proposition. As for the “if” part,
just note that Q can be fully faithfully embedded in Q-Dist:

Proposition 6.7. (See [22].) A small quantaloid Q is a Girard quantaloid if, and only if, Q-Dist is a Girard quan-
taloid.

Hence, with Q being Girard, each Q-distributor ϕ : A //◦ B has a complement

¬ϕ := ¬A↙ ϕ = ϕ↘ ¬B : B //◦ A.

Proposition 6.8. If Q is a small Girard quantaloid, then for any Q-category A,

¬ : PA −→ P†A

is an isomorphism in Q-Cat.

Proof. Since {¬A}A∈ob(Q-Dist) is a cyclic dualizing family, one has

PA(µ, λ) = λ↙ µ = ((¬A↙ λ)↘ ¬A)↙ µ = (¬A↙ λ)↘ (¬A↙ µ) = P†A(¬µ,¬λ)

for all µ, λ ∈ PA. Thus ¬ : PA −→ P†A is a fully faithful Q-functor, and consequently an isomorphism in Q-Cat
since it is obviously surjective.

From the combination of Example 4.11 and Proposition 6.8 one immediately obtains a codense Q-functor

¬Y†A := (A
Y†A // P†A ¬ // PA) (6.iv)

for any Q-category A when Q is Girard. The representation of Kϕ follows easily in this case, which gives the Q-
version of Theorem 1.4:

Corollary 6.9. Let Q be a small Girard quantaloid. Then for any Q-distributor ϕ : A //◦ B, a separated complete
Q-category X is isomorphic to Kϕ if, and only if, there exist a dense Q-functor F : B −→ X and a codense Q-functor
G : A −→ X with ¬ϕ = G\ ◦ F\.

Proof. With Theorem 6.5 at hand, it suffices to prove

Kϕ = M(¬ϕ).

Indeed, since {¬A}A∈ob(Q-Dist) is a dualizing family,

ϕ∗ϕ
∗λ = ((¬A↙ (ϕ∗λ))↘ ¬A)↙ ϕ

= (¬A↙ (λ ◦ ϕ))↘ (¬A↙ ϕ)
= ((¬A↙ ϕ)↙ λ)↘ (¬A↙ ϕ)
= (¬ϕ↙ λ)↘ ¬ϕ

= (¬ϕ)↓(¬ϕ)↑λ

for all λ ∈ PB. Hence ϕ∗ϕ∗ = (¬ϕ)↓(¬ϕ)↑ : PB −→ PB, and the conclusion follows.
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Although the above proof is indirect, it is not difficult prove this corollary directly using Theorems 3.3 and 5.1 as
the following diagrams (cf. the diagrams (6.ii) below Theorem 6.5) sketch, which also explain the role of the codense
Q-functor (6.iv):

B

PB
YB

99

A

PA
¬Y†A

ee

B

Kϕ
F=LYB ))

A

Kϕ
G=R¬Y†Auu

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

Kϕ

L=ϕ∗ϕ
∗

��

PA

Kϕ

R=ϕ∗

��

⊥

B

PB
YB

77

A

PA
¬Y†A

gg

B

X
F

**

A

X
G

tt

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

X

L=LanYB F

��

PA

X

R=Ran
¬Y†A

G

��

⊥

(6.v)

However, Corollary 6.9 does not make sense for a general quantaloid Q. In fact, the following proposition blocks
the way of finding a codense Q-functor A −→ PA for an arbitrary Q-category A without assuming Q being Girard:

Proposition 6.10. Let Q be a small quantaloid in which 1q = >q : q −→ q for all q ∈ Q0 and {⊥q}q∈Q0 is a cyclic
family, where >q and ⊥q denote the top and bottom arrows in Q(q, q), respectively. Then the following statements are
equivalent:

(i) {⊥q}q∈Q0 is a dualizing family, hence Q is a Girard quantaloid.
(ii) There exists a codense Q-functor F : A −→ PA for any Q-category A.

Proof. (i) =⇒ (ii): ¬Y†A : A −→ PA is the required codense Q-functor (see (6.iv)).
(ii) =⇒ (i): For each q ∈ Q0, objects in P{q} are exactly Q-arrows with domain q. Suppose there exists a codense

Q-functor F : {q} −→ P{q} targeting at w : q −→ q, then F\ ∈ PP{q} satisfies F\(u) = w ↙ u for all u ∈ P{q}, and
consequently

P{q}(v, u) = F\(u)↘ F\(v) (Proposition 4.12(iv))
= (w↙ u)↘ (w↙ v)
= ((w↙ u)↘ w)↙ v

= P{q}(v, (w↙ u)↘ w)

for all v ∈ P{q}, which implies u = (w↙ u)↘ w. In particular, since 1q = >q, letting u = ⊥q and one has

w = 1q ↘ w ≤ (w↙ ⊥q)↘ w = ⊥q,

which exactly means w = ⊥q. Hence u = (⊥q ↙ u) ↘ ⊥q, and the arbitrariness of u indicates that {⊥q}q∈Q0 is a
dualizing family, completing the proof.

A family of quantaloids that satisfy the hypotheses in Proposition 6.10 is given below:

Example 6.11. For any frame (L,∧,→, 0, 1), one may construct a quantaloid DL [10, 20, 31] with the following data:

• objects in DL are the elements of L;

• each DL(p, q) = {u ∈ L : u ≤ p ∧ q} is equipped with the order inherited from L;

• the composition of DL-arrows u ∈ DL(p, q), v ∈ DL(q, r) is given by v ◦ u = v ∧ u;

• the implications of DL-arrows are given by

w↙ u = q ∧ r ∧ (u→ w) and v↘ w = p ∧ q ∧ (v→ w)

for all u ∈ DL(p, q), v ∈ DL(q, r), w ∈ DL(p, r);

• the identity DL-arrow in DL(q, q) is q itself.
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It is straightforward to check that {0 : q −→ q}q∈L is a cyclic family in DL, but it is a dualizing family in DL if and
only if L is a Boolean algebra.

So, it is unavoidable that for a non-Girard quantaloid Q, a codense Q-subcategory of the presheaf Q-category PA
would have a larger size than A. If we look again at the codense Q-functor ¬Y†A : A −→ PA in (6.iv) when Q is
Girard, we will see that it actually generates a codense Q-subcategory of PA with objects

{µ ∈ PA | µ = ¬Y†Aa = d|a| ↙ A(a,−) for some a ∈ A0}; (6.vi)

that is, presheaves on A which are complements of representable copresheaves on A. For a general quantaloid Q,
although the complements of Q-distributors may not exist, (6.vi) suggests us to construct a Q-subcategory A of PA
consisting of all the possible relative pseudo-complements of representable copresheaves on A:

A0 = {µ ∈ PA | µ = u↙ A(a,−) for some a ∈ A0 and Q-arrow u : |a| −→ cod u}. (6.vii)

A is certainly a non-trivial Q-subcategory of PA. We will see that A is a codense Q-subcategory of PA (Proposition
6.15) and, moreover, a

∧
-dense Q-subcategory of PA as an immediate consequence of Proposition 7.5 discussed in

Section 7.

6.3. Representation theorem for fixed points of Kan adjunctions
Given a Q-category A, the codomain restriction of the graph of the Yoneda embedding (YA)\ : A //◦ PA on A

gives a Q-distributor A. : A //◦ A with

A.(−, µ) = (YA)\(−, µ) = µ (6.viii)

for all µ ∈ A0, where the second equality follows from the Yoneda lemma. The following identity holds for all
Q-distributors ϕ : A //◦ B:

Proposition 6.12. ϕ = (A. ↙ ϕ)↘ A..

Proof. Since ϕ = (A. ↙ ϕ) ↘ A. if and only if ϕ(−, b) = (A. ↙ ϕ(−, b)) ↘ A. for all b ∈ B0, it suffices to prove
µ = (A. ↙ µ)↘ A. for any µ ∈ PA. On one hand,

µ(a)↙ A(a,−) ∈ A0

for all a ∈ A0 implies

µ = µ↙ A

=
∧

a∈A0

µ(a)↙ A(a,−)

=
∧

a∈A0

((µ(a)↙ µ(a))↘ µ(a))↙ A(a,−)

=
∧

a∈A0

(µ(a)↙ µ(a))↘ (µ(a)↙ A(a,−))

=
∧

a∈A0

(µ(a)↙ (µ ◦ A(a,−)))↘ (µ(a)↙ A(a,−))

=
∧

a∈A0

((µ(a)↙ A(a,−))↙ µ)↘ (µ(a)↙ A(a,−))

≥
∧
µ′∈A0

(µ′ ↙ µ)↘ µ′

=
∧
µ′∈A0

(A.(−, µ′)↙ µ)↘ A.(−, µ′) (Equation (6.viii))

= (A. ↙ µ)↘ A..

On the other hand, µ ≤ (A. ↙ µ)↘ A. is trivial. The conclusion thus follows.
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This proposition indicates that the family {A. : A //◦ A}A∈ob(Q-Cat) in Q-Dist satisfies part of the properties of a
dualizing family in a quantaloid (see (6.iii)). Therefore, it makes sense to define the relative pseudo-complement of
any Q-distributor ϕ : A //◦ B with respect to A. as

ϕ. := A. ↙ ϕ : B //◦ A. (6.ix)

It is easy to obtain the following expressions for ϕ.:

Lemma 6.13. For any µ = u↙ A(a,−) ∈ A0,

(1) ϕ.(−, µ) = µ↙ ϕ = ϕ∗µ,
(2) ϕ.(−, u↙ A(a,−)) = u↙ ϕ(a,−).

With the above preparations, now we are ready to establish the following representation theorem of Kϕ, which
extends Corollary 6.9 from a Girard quantaloid to a general quantaloid:

Theorem 6.14. For any Q-distributor ϕ : A //◦ B, a separated complete Q-category X is isomorphic to Kϕ if, and
only if, there exist a dense Q-functor F : B −→ X and a codense Q-functor G : A −→ X with ϕ. = G\ ◦ F\.

Proof. Similar to the proof of Corollary 6.9, it suffices to prove ϕ∗ϕ∗ = (ϕ.)↓(ϕ.)↑ : PB −→ PB, which implies

Kϕ = Mϕ.

and the conclusion would follow from Theorem 6.5. Indeed,

ϕ∗ϕ
∗λ = ((A. ↙ (ϕ∗λ))↘ A.)↙ ϕ (Proposition 6.12)

= (A. ↙ (λ ◦ ϕ))↘ (A. ↙ ϕ)
= ((A. ↙ ϕ)↙ λ)↘ (A. ↙ ϕ)
= (ϕ. ↙ λ)↘ ϕ. (Equation (6.ix))

= (ϕ.)↓(ϕ.)↑λ

for all λ ∈ PB, as desired.

Since KA = PA (see Example 6.4), Theorem 6.14 in particular implies the existence of a codense Q-functor
G : A −→ PA. In fact, the inclusion Q-functor J : A −→ PA is codense:

Proposition 6.15. A is a codense Q-subcategory of PA.

Proof. For any µ ∈ PA, note that µ. = A. ↙ µ : {|µ|} //◦ A is in P†A, and we claim µ = limµ. J. Indeed, by applying
Equation (6.viii) to any λ ∈ PA one has

A.(−, ν)↙ λ = ν↙ λ = PA(λ, ν) = PA(λ, Jν) = J\(λ, ν) (6.x)

for all ν ∈ A0, and consequently

PA(λ, µ) = µ↙ λ

= (µ. ↘ A.)↙ λ (Proposition 6.12)
= µ. ↘ (A. ↙ λ)

= µ. ↘ J\(λ,−), (Equation (6.x))

showing that µ = limµ. J.
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Hence, one is able to prove Theorem 6.14 directly through Theorems 3.3 and 5.1 as the following diagrams
illustrate; the details are similar to the proof of Theorem 6.5 and will be left to the readers. We also remind the readers
to compare (6.xi) with the diagrams (6.v) under Corollary 6.9, which clearly indicate the difference between the cases
of Q being Girard or not:

B

PB
YB

99

A

PA

3 S

J
ee

B

Kϕ
F=LYB ))

A

Kϕ
G=RJ

uu

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

Kϕ

L=ϕ∗ϕ
∗

��

PA

Kϕ

R=ϕ∗

��

⊥

B

PB
YB

77

A

PA

4 T

J
gg

B

X
F

**

A

X
G

tt

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

X

L=LanYB F

��

PA

X

R=RanJ G

��

⊥

(6.xi)

Remark 6.16. The identity Kϕ = Mϕ. obtained in the proof of Theorem 6.14 shows that the “concept lattice” of
any multi-typed and multi-valued context in RST can be represented as the “concept lattice” of the relative pseudo-
complement of the given context in FCA. In fact, there are other trivial ways to represent any Kϕ as a “concept lattice”
in FCA.

First, for any separated complete Q-category A one may easily check

M(A : A //◦ A) = ImYA = {YAa | a ∈ A0} � A.

In particular, Kϕ is a separated complete Q-category and thus Kϕ � M(Kϕ : Kϕ //◦ Kϕ).
Second, similar to Proposition 6.12 one may prove that ϕ = ((YA)\ ↙ ϕ) ↘ (YA)\ for any Q-distributor ϕ :

A //◦ B, and consequently one has
Kϕ = M((YA)\ ↙ ϕ)

by performing the same calculations in Theorem 6.14, where (YA)\ ↙ ϕ is in fact the relative pseudo-complement of
ϕ with respect to (YA)\.

Therefore, the point of the construction A in Theorem 6.14 is to find a smallest possible codense Q-subcategory
of PA. Although A may not be precisely the smallest one (e.g., when Q is a Girard quantaloid), it is the best solution
we find for an arbitrary quantaloid Q.

Example 6.17. For the identity Q-distributor A : A //◦ A on a Q-category A, since KA = PA, we have the dense
Yoneda embedding YA : A −→ PA and the codense inclusion Q-functor J : A �

�
// PA that satisfy

A.(−, µ) = µ = PA(YA−, µ) = PA(YA−, Jµ) = J\(−, µ) ◦ (YA)\

for all µ ∈ A0, where the first two equalities hold by Equation (6.viii) and the Yoneda lemma, respectively.
More generally, for any fully faithful Q-functor F : A −→ B one has KF\ = PA since

(F\)∗(F\)∗µ = (F\)∗(F\)∗µ = (F\ ◦ F\)∗µ = A∗µ = µ

for all µ ∈ PA, where the first and the third equalities respectively follow from Propositions 2.4(1) and 2.3(1). In this

case, the dense Yoneda embedding YA : A −→ PA and the codense Q-functor H := (B �
� J // PB

(F\)∗ // PA) satisfy

(F\).(−, λ) = (F\)∗λ = PA(YA−,Hλ) = H\(−, λ) ◦ (YA)\

for all λ ∈ B0, where the first two equalities follow from Lemma 6.13(1) and the Yoneda lemma, respectively.

Example 6.18. Let A be a completely distributive (or equivalently, totally continuous) Q-category [29]; that is, a
complete Q-category in which supA : PA −→ A has a left adjoint TA : A −→ PA in Q-Cat. Let θA : A //◦ A be the
Q-distributor with transpose

←−
θA = TA (see (6.i)). Since supA : PA −→ A is essentially surjective and thus codense

(see Corollary 4.13(1)), from Proposition 6.15 and Corollary 4.13(2) one immediately knows that the restriction

G := (A �
�
// PA

supA // A)
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of supA on A is codense. As 1A : A −→ A is obviously dense, and

θ .A(−, µ) = µ↙ θA (Lemma 6.13(1))

= PA(TA−, µ) (
←−
θA = TA)

= A(−,Gµ) (TA a supA)

= G\(−, µ) ◦ (1A)\

for all µ ∈ A0, one soon deduces KθA ' A from Theorem 6.14.

6.4. The functoriality of relative pseudo-complements
At the end of this section, we show that the identity

Kϕ = Mϕ.

obtained in the proof of Theorem 6.14 can be established on the functorial level; that is, the process of generating the
“concept lattice” in RST from a Q-distributor ϕ can be decomposed into two functorial steps:

(1) calculating the relative pseudo-complement ϕ.;
(2) generating the “concept lattice” of ϕ. in FCA.

First we establish the functoriality of the relative pseudo-complement

ϕ. = A. ↙ ϕ

of a Q-distributor ϕ with respect to A.. In fact, Q-distributors can be organized as objects into a category Q-Chu with
Chu transforms (called infomorphisms in [26])

(F,G) : (ϕ : A //◦ B) −→ (ψ : A′ //◦ B′)

as morphisms; that is, Q-functors F : A −→ A′ and G : B′ −→ B such that the square

B B′
G\

//

A

B

ϕ

��

A A′
F\

// A′

B′

ψ

��

◦

◦

◦ ◦

is commutative, or equivalently, ψ(F−,−) = ϕ(−,G−).
For any Q-functor F : A −→ A′ and u↙ A(a,−) ∈ A0, note that

(F\)∗(u↙ A(a,−)) = (u↙ A(a,−))↙ F\ = u↙ (F\ ◦ A(a,−)) = u↙ A′(Fa,−) (6.xii)

is an object in A′. Thus (F\)∗ : PA −→ PA′ can be restricted as a Q-functor (F\)∗ : A −→ A′.

Proposition 6.19. (G, (F\)∗) : (ψ. : B′ //◦ A′) −→ (ϕ. : B //◦ A) is a Chu transform provided so is (F,G) : (ϕ :
A //◦ B) −→ (ψ : A′ //◦ B′).

Proof. If (F,G) : ϕ −→ ψ is a Chu transform, then for all µ = u↙ A(a,−) ∈ A0,

ϕ.(G−, µ) = u↙ ϕ(a,G−) (Lemma 6.13(2))
= u↙ ψ(Fa,−) ((F,G) is a Chu transform)
= ψ.(−, u↙ A′(Fa,−)) (Lemma 6.13(2))
= ψ.(−, (F\)∗µ). (Equation (6.xii))

Thus (G, (F\)∗) : ψ. −→ ϕ. is a Chu transform.
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Proposition 6.19 induces a contravariant functor

(−). : (Q-Chu)op −→ Q-Chu

that sends each Q-distributor to its relative pseudo-complement with respect to A. and sends each Chu transform
(F,G) : ϕ −→ ψ to (G, (F\)∗) : ψ. −→ ϕ..

It is known in [26] that the assignments ϕ 7→ Mϕ and ϕ 7→ Kϕ are respectively functorial and contravariant
functorial from Q-Chu to the category Q-Sup of separated complete Q-categories and left adjoint Q-functors (or
equivalently, sup-preserving Q-functors; see Proposition 4.10(iii)). Explicitly, for any Chu transform (F,G) : (ϕ :
A //◦ B) −→ (ψ : A′ //◦ B′),

M(F,G) = ψ↓ψ↑(F\)∗ : Mϕ −→ Mψ and K(F,G) = ϕ∗ϕ
∗(G\)∗ : Kψ −→ Kϕ

define functors
M : Q-Chu −→ Q-Sup and K : (Q-Chu)op −→ Q-Sup.

Hence, the identity Kϕ = Mϕ. can be expressed as the following commutative diagram:

Proposition 6.20. The diagram

(Q-Chu)op Q-Chu
(−).

//(Q-Chu)op

Q-Sup

K
((

Q-Chu

Q-Sup

M

��

is commutative.

Proof. It suffices to prove M(G, (F\)∗) = K(F,G) : Kψ = Mψ. −→ Kϕ = Mϕ. for any Chu transform (F,G) : ϕ −→ ψ.
This is easy since

K(F,G) = ϕ∗ϕ
∗(G\)∗ = (ϕ.)↓(ϕ.)↑(G\)∗ = M(G, (F\)∗),

where the second equality holds because when restricting the codomain to the image, both ϕ∗ϕ∗ and (ϕ.)↓(ϕ.)↑ are left
adjoint to the same inclusion Q-functor Kϕ = Mϕ. �

�
// PB (see Proposition 3.1), thus they must be equal.

7. Elementary representation theorems in terms of join-(meet-)dense maps

A map f : A −→ B between (pre)ordered sets is
∨

-dense (i.e., join-dense) (resp.
∧

-dense (i.e., meet-dense)) if, for
any y ∈ B, there exists {xi}i∈I ⊆ A with y �

∨
i∈I

f xi (resp. y �
∧
i∈I

f xi). Obviously,
∨

-dense (resp.
∧

-dense) monotone

maps between ordered sets are precisely dense (resp. codense) 2-functors between 2-categories. With a little abuse
of language, we say that a Q-functor F : A −→ B is

∨
-dense (resp.

∧
-dense) if its underlying type-preserving map

F : A0 −→ B0, as a monotone map between the underlying ordered sets of A and B, is
∨

-dense (resp.
∧

-dense).

Proposition 7.1.
∨

-dense (resp.
∧

-dense) Q-functors into complete Q-categories are necessarily dense (resp. co-
dense).

Proof. Let F : A −→ B be a
∨

-dense Q-functor, with B complete. For any y ∈ B0, let {xi}i∈I ⊆ A0 with y �∨
i∈I

Fxi, then
∨
i∈I

A(−, xi), the join of {A(−, xi)}i∈I in the underlying order of PA, is also in PA. Since B is complete,

Y†B : P†B −→ B is a left adjoint in Q-Cat (see Theorem 4.4(vi)), and thus preserves underlying joins by Proposition
4.10(4), i.e.,

B
Ä∨

i∈I

Fxi,−
ä

= Y†B
∨
i∈I

Fxi =
⊔
i∈I

Y†BFxi =
∧
i∈I

B(Fxi,−),

where
⊔

denotes the underlying join in P†B (see Remark 4.1). Hence

B(y,−) = B
Ä∨

i∈I

Fxi,−
ä

=
∧
i∈I

B(Fxi,−) =
∧
i∈I

F\ ↙ A(−, xi) = F\ ↙
∨
i∈I

A(−, xi),

and consequently y � colim∨
i∈I

A(−,xi) F, showing that F is dense.
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Remark 7.2. The converse of Proposition 7.1 is not true; that is, dense (resp. codense) Q-functors are not necessarily∨
-dense (resp.

∧
-dense). For example, the Yoneda embedding YA : A −→ PA is dense for any Q-category A (see

Example 4.11), but it is not
∨

-dense. In fact, this is clear when one considers the singleton Q-category {q}, in which
case the image of Y{q} : {q} −→ P{q} contains only one object and thus it can never be

∨
-dense in P{q} as long as Q

is larger than 2. Similarly, the co-Yoneda embedding Y†A : A −→ P†A is codense but in general not
∧

-dense.

Each Q-typed set A may be viewed as a discrete Q-category with

A(x, y) =

®
1|x|, if x = y,
⊥|x|,|y|, else,

where ⊥|x|,|y| is the bottom arrow in Q(|x|, |y|). It is easy to see that type-preserving maps from a discrete Q-category to
any other Q-category are necessarily Q-functors. Therefore, Proposition 7.1 induces the following elementary version
of Theorem 5.1 which only employs order-theoretic notions (i.e.,

∨
-density and

∧
-density of maps) to characterize

the Q-categorical equivalence:

Theorem 7.3. Let S a T : D −→ C be an adjunction between complete Q-categories. Then a complete Q-category
X is equivalent to Fix(TS ) if, and only if, there exist

∨
-dense type-preserving maps F : A −→ X0, K : A −→ C0 and∧

-dense type-preserving maps G : B −→ X0, H : B −→ D0, where A, B are Q-typed sets, such that D(S K−,H−) =

X(F−,G−).

Proof. The necessity is trivial by taking A = C0, B = D0 and applying Theorem 3.3 as in the proof of Theorem
5.1. For the sufficiency, the type-preserving maps F,K,G,H are all Q-functors and, by Proposition 2.2, X(F−,G−) =

D(S K−,H−) means precisely G\ ◦ F\ = H\ ◦ S \ ◦ K\:

A

C
K

;;

B

D
H

cc

A

X
F

((

B

X
G

vv

C D
S // DC
T

oo ⊥

A

C
K\

;; C D
S \=T \

// D

B

H\

##
A

X
F\

(( X

B

G\

66

◦

◦

◦

◦ ◦

Therefore, the conclusion follows soon from Proposition 7.1 and Theorem 5.1.

Theorem 7.3 is precisely the Q-version of Theorem 1.2. As applications of Theorem 7.3, we will derive elementary
representation theorems of Mϕ and Kϕ in the rest of this section. To this end, for any Q-category A we denote by
A0 ×dom Q1 the Q-typed set

A0 ×dom Q1 = {(a, u) | a ∈ A0, u : |a| −→ cod u is a Q-arrow}

with types |(a, u)| = cod u for all (a, u) ∈ A0 ×dom Q1. Dually, we write

A0 ×cod Q1 = {(a, u) | a ∈ A0, u : dom u −→ |a| is a Q-arrow}

for the Q-typed set with types |(a, u)| = dom u for all (a, u) ∈ A0 ×cod Q1.

Remark 7.4. Note that neither A0 ×dom Q1 nor A0 ×cod Q1 is a product in the slice category Set ↓ Q0. Let (Q1, dom)
and (Q1, cod) be Q-typed sets with type maps sending each Q-arrow to its domain and codomain, respectively. Then
the product A0 × (Q1, dom) in Set ↓ Q0 has exactly the same underlying set as A0 ×dom Q1, but the type of (a, u) ∈
A0 × (Q1, dom) is |(a, u)| = |a| = dom u. Similarly, the underlying set of the product A0 × (Q1, cod) in Set ↓ Q0 is the
same as A0 ×cod Q1, but the type of (a, u) ∈ A0 × (Q1, cod) is |(a, u)| = |a| = cod u.
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Considering A0 ×dom Q1 and A0 ×cod Q1 as discrete Q-categories, one has the following Q-functors (which only
have to be type-preserving maps):

UA : A0 ×dom Q1 −→ PA, UA(a, u) = u ◦ YAa = u ◦ A(−, a),

NA : A0 ×dom Q1 −→ PA, NA(a, u) = u↙ Y†Aa = u↙ A(a,−),

U†A : A0 ×cod Q1 −→ P†A, U†A(a, u) = Y†Aa ◦ u = A(a,−) ◦ u,

N†A : A0 ×cod Q1 −→ P†A, N†A(a, u) = YAa↘ u = A(−, a)↘ u.

Proposition 7.5. For any Q-category A, UA, N†A are
∨

-dense, and NA, U†A are
∧

-dense.

Proof. The
∨

-density of UA and the
∧

-density of NA are easy since

µ = µ ◦ A =
∨

a∈A0

µ(a) ◦ A(−, a) =
∨

a∈A0

UA(a, µ(a)),

µ = µ↙ A =
∧

a∈A0

µ(a)↙ A(a,−) =
∧

a∈A0

NA(a, µ(a))

for all µ ∈ PA. For the
∧

-density of U†A and the
∨

-density of N†A, just note that

λ = A ◦ λ =
∨

a∈A0

A(a,−) ◦ λ(a) =
l

a∈A0

U†A(a, λ(a)),

λ = A↘ λ =
∧

a∈A0

A(−, a)↘ λ(a) =
⊔

a∈A0

N†A(a, λ(a))

for all λ ∈ P†A, where
d

and
⊔

are calculated in the underlying order of P†A (see Remark 4.1).

It is easy to observe Im(NA) = A (see (6.vii)), and thus, as we mentioned at the end of Subsection 6.2, the crucial
construction A in the representation theorem of Kϕ (i.e., Theorem 6.14) is in fact a

∧
-dense Q-subcategory of PA.

Proposition 7.6. Let ϕ : A //◦ B be a Q-distributor. Then

(1) (ϕ↑)\(UA(a, u),U†B(b, v)) = v↘ (ϕ(a, b)↙ u) for all (a, u) ∈ A0 ×dom Q1, (b, v) ∈ B0 ×cod Q1,
(2) (ϕ∗)\(UB(b, v),NA(a, u)) = (u↙ ϕ(a, b))↙ v for all (a, u) ∈ A0 ×dom Q1, (b, v) ∈ B0 ×dom Q1.

Proof. Straightforward calculation.

Theorem 7.7. For any Q-distributor ϕ : A //◦ B, a separated complete Q-category X is isomorphic to Mϕ if, and
only if, there exist a

∨
-dense type-preserving map F : A0 ×dom Q1 −→ X0 and a

∧
-dense type-preserving map

G : B0 ×cod Q1 −→ X0 such that
v↘ (ϕ(a, b)↙ u) = X(F(a, u),G(b, v))

for all (a, u) ∈ A0 ×dom Q1, (b, v) ∈ B0 ×cod Q1.

Proof. Necessity. By Theorem 3.3 there exist surjective Q-functors L : PA −→ X and R : P†B −→ X with
(ϕ↑)\ = X(L−,R−). It is easy to see that Corollary 4.13 also holds for

∨
-dense and

∧
-dense type-preserving maps;

in fact, one just needs to consider Q = 2 and note that left (resp. right) adjoint Q-functors are also left (resp. right)
adjoints in the underlying order (see Proposition 4.10(4)). Therefore, following the same reasoning in the proof of
Theorem 6.5 one deduces the

∨
-density of LUA : A0 ×dom Q1 −→ X0 and the

∧
-density of RU†B : B0 ×cod Q1 −→ X0.

A0 ×dom Q1

PA
UA

44

B0 ×cod Q1

P†B
U†B

jj

A0 ×dom Q1

Mϕ
F=LUA ++

B0 ×cod Q1

Mϕ
G=RU†Bss

PA P†B
ϕ↑

//
P†BPA

ϕ↓
ooPA

Mϕ

L=ϕ↓ϕ↑

��

P†B

Mϕ

R=ϕ↓

��

⊥
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Finally, Proposition 7.6(1) implies

v↘ (ϕ(a, b)↙ u) = (ϕ↑)\(UA(a, u),U†B(b, v)) = X(LUA(a, u),RU†B(b, v))

for all (a, u) ∈ A0 ×dom Q1, (b, v) ∈ B0 ×cod Q1.
Sufficiency. From Proposition 7.5 we have

∨
-dense type-preserving maps UA : A0 ×dom Q1 −→ PA, F :

A0 ×dom Q1 −→ X0 and
∧

-dense type-preserving maps U†B : B0 ×cod Q1 −→ P†B, G : B0 ×cod Q1 −→ X0 with

X(F(a, u),G(b, v)) = v↘ (ϕ(a, b)↙ u) = P†B(ϕ↑UA(a, u),U†B(b, v))

A0 ×dom Q1

PA
UA

44

B0 ×cod Q1

P†B
U†B

jj

A0 ×dom Q1

X
F ++

B0 ×cod Q1

X
G

ss

PA P†B
ϕ↑

//
P†BPA

ϕ↓
ooPA

X

L=LanUA F

��

P†B

X

R=Ran
U†B

G

��

⊥

for all (a, u) ∈ A0×dom Q1, (b, v) ∈ B0×cod Q1 by Proposition 7.6(1). Thus the conditions in Theorem 7.3 are satisfied,
completing the proof.

Theorem 7.8. For any Q-distributor ϕ : A //◦ B, a separated complete Q-category X is isomorphic to Kϕ if, and
only if, there exist a

∨
-dense type-preserving map F : B0 ×dom Q1 −→ X0 and a

∧
-dense type-preserving map

G : A0 ×dom Q1 −→ X0 such that
(u↙ ϕ(a, b))↙ v = X(F(b, v),G(a, u))

for all (a, u) ∈ A0 ×dom Q1, (b, v) ∈ B0 ×dom Q1.

Proof. Similar to Theorem 7.7 under the help of Proposition 7.6(2) and the details are left to the readers. Here we
just sketch the diagrams both for the “only if” part and the “if” part as a comparison to the above theorem and the
diagrams (6.xi) illustrating Theorem 6.14:

B0 ×dom Q1

PB
UB

44

A0 ×dom Q1

PA
NA

jj

B0 ×dom Q1

Kϕ
F=LUB ++

A0 ×dom Q1

Kϕ
G=RNAss

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

Kϕ

L=ϕ∗ϕ
∗

��

PA

Kϕ

R=ϕ∗

��

⊥

B0 ×dom Q1

PB
UB

44

A0 ×dom Q1

PA
NA

jj

B0 ×dom Q1

X
F ++

A0 ×dom Q1

X
Gss

PB PA
ϕ∗

//
PAPB

ϕ∗
ooPB

X

L=LanUB F

��

PA

X

R=RanNA G

��

⊥

In the case that Q has only one object, i.e., a unital quantale, both A0×domQ1 and A0×codQ1 become the cartesian
product of the set A0 and the set of elements of Q. As the following immediate corollary of Theorems 7.7 and 7.8
states, our results generalize Bělohlávek’s representation theorem for concept lattices of quantale-valued contexts in
FCA (see [3, Theorem 14(2)]) and Popescu’s representation theorem for those in RST (see [19, Proposition 7.3]):

Corollary 7.9. Let Q be a unital quantale, ϕ : A //◦ B a Q-distributor and X a separated complete Q-category.
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(1) X is isomorphic to Mϕ if, and only if, there exist a
∨

-dense map F : A0 × Q −→ X0 and a
∧

-dense map
G : B0 ×Q −→ X0 such that

v↘ (ϕ(a, b)↙ u) = X(F(a, u),G(b, v))

for all a ∈ A0, b ∈ B0, u, v ∈ Q.
(2) X is isomorphic to Kϕ if, and only if, there exist a

∨
-dense map F : B0 × Q −→ X0 and a

∧
-dense map

G : A0 ×Q −→ X0 such that
(u↙ ϕ(a, b))↙ v = X(F(b, v),G(a, u))

for all a ∈ A0, b ∈ B0, u, v ∈ Q.

Remark 7.10. Bělohlávek’s [3, Theorem 14(2)] is precisely Corollary 7.9(1) when Q is a commutative integral
quantale, while Popescu’s [19, Proposition 7.3] is a weaker version of our Corollary 7.9(2) even if Q is commutative
and integral. Explicitly, Popescu’s result should be stated as:

A complete lattice X is isomorphic to the underlying complete lattice of Kϕ if, and only if, there exist a∨
-dense map F : B0 ×Q −→ X and a

∧
-dense map G : A0 ×Q −→ X such that

ϕ(a, b) ≤ v↘ u ⇐⇒ F(b, v) ≤ G(a, u)

for all a ∈ A0, b ∈ B0, u, v ∈ Q.

In fact, the “only if” part of the above claim is an immediate consequence of Corollary 7.9(2), and the “if” part follows
by applying Theorem 7.3 in the case Q = 2 to the underlying Galois connection (between the underlying ordered sets)
of ϕ∗ a ϕ∗.

8. Concluding remarks

The following diagram indicates the connections between the most important representation theorems established
in this paper. With the general representation theorems for fixed points of adjoint Q-functors in hand, one is able
to derive various kinds of representation theorems for concept lattices in FCA and those in RST in the generality
their Q-version. Besides unifying and extending existing representation theorems, their most important application
in this paper is the development of a universal approach to represent concept lattices in RST as those in FCA; to
our knowledge, this has never been achieved before for multi-typed and multi-valued contexts possibly valued in a
non-Girard quantaloid, although its 2-version is trivial. Moreover, we believe that the general representation theorems
have the potential to be applied to more areas which deserve further investigation.

General representation theorems 3.3 & 5.1

Representation of Mϕ (Theorem 6.5)

Representation of Kϕ (Theorem 6.14)

Elementary representation of Mϕ (Theorem 7.7) Elementary representation of Kϕ (Theorem 7.8)

Representation theorems
in more areas?
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[1] R. Bělohlávek. Fuzzy Galois connections. Mathematical Logic Quarterly, 45(4):497–504, 1999.
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