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Quiz announcement

The first quiz will be held on Thursday, Oct 16, 9-10 pm in
class.

Relevant material is in Chapter 1, excluding those contents
that are not covered in the lecture notes (e.g., Section 1.2
and 1.8, the subsection “Applications of Satisfiability” in
Section 1.3).
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Revisiting the “mortal” example

Example
If we have

“All men are mortal.”
“I am a man.”

How do we get the conclusion “I am mortal” from the
premises?
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Revisiting the “mortal” example

We can express the premises (above the line) and the
conclusion (below the line) in predicate logic as an
argument:

∀x(Man(x)→ Mortal(x))
Man(I)

∴ Mortal(I)

We will see shortly that this is a valid argument.
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Valid arguments

We will show how to construct valid arguments in two
stages. The rules of inference are the essential building
block in the construction of valid arguments.

Propositional Logic:
Rules of inference
Predicate Logic:
Rules of inference for propositional logic plus additional
rules to handle variables and quantifiers.
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Arguments

Definition
(1) An argument in propositional logic is a sequence of

propositions. All but the final proposition are called
premises. The last statement is the conclusion.

(2) An argument is valid if the premises imply the
conclusion. An argument form is an argument that is
valid no matter what propositions are substituted into its
propositional variables.
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Arguments

It follows immediately from the definition of an argument
form that

the premises p1,p2, . . . ,pn and the conclusion q
constitute an argument form if and only if

(p1 ∧ p2 ∧ · · · ∧ pn)→ q

is a tautology.
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Rules of inferences

We can always use a truth table to show that an argument
form with premises p1,p2, . . . ,pn and an conclusion q is
valid, i.e., to show that

(p1 ∧ p2 ∧ · · · ∧ pn)→ q

is a tautology as we did in Section 1.3. However, the truth
table becomes gigantic when there are many propositional
variables.

Rules of inferences are simple argument forms that will be
used to construct more complex argument forms.
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Rules of inferences

Modus Ponens

Rule of inference Tautology
p
p → q (p ∧ (p → q))→ q

∴ q
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Rules of inferences

Example
Let p be “I am learning mathematics.”
Let q be “I am happy.”

“If I am learning mathematics, then I am happy.”
“I am learning mathematics.”

“Therefore, I am happy.”
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Rules of inferences

Modus tollens

Rule of inference Tautology
¬q
p → q (¬q ∧ (p → q))→ ¬p

∴ ¬p
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Rules of inferences

Example
Let p be “I love mathematics.”
Let q be “The pigs can fly.”

“If I love mathematics, then the pigs can fly.”
“The pigs cannot fly.”

“Therefore, I do not love mathematics.”
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Rules of inferences

Hypothetical syllogism

Rule of inference Tautology
p → q
q → r ((p → q) ∧ (q → r))→ (p → r)

∴ p → r
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Rules of inferences

Example
Let p be “I love mathematics.”
Let q be “The pigs can fly.”
Let r be “The Phantom Menace would be a timeless
classic.”

“If I love mathematics, then the pigs can fly.”
“If the pigs can fly, then the Phantom Menace would be a
timeless classic.”

“Therefore, if I love mathematics, then the Phantom Menace
would be a timeless classic.”
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Rules of inferences

Disjunctive syllogism

Rule of inference Tautology
p ∨ q
¬p ((p ∨ q) ∧ ¬p)→ q

∴ q
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Rules of inferences

Example
Let p be “Hello Kitty is a cat.”
Let q be “Hello Kitty is a girl.”

“Hello Kitty is a cat a or a girl.”
“Hello Kitty is not a cat.”

“Therefore, Hello Kitty is a girl.”
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Rules of inferences

Addition

Rule of inference Tautology
p p → (p ∨ q)

∴ p ∨ q
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Rules of inferences

Example
Let p be “Hello Kitty is a girl.”
Let q be “Hello Kitty is a cat.”

“Hello Kitty is a girl.”

“Therefore, Hello Kitty is a girl or a cat.”
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Rules of inferences

Simplification

Rule of inference Tautology
p ∧ q (p ∧ q)→ p

∴ p
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Rules of inferences

Example
Let p be “I am a man.”
Let q be “I am smart.”

“I am a smart man.”
(i.e., “I am a man and I am smart.”)

“Therefore, I am a man.”
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Rules of inferences

Conjunction

Rule of inference Tautology
p
q (p ∧ q)→ (p ∧ q)

∴ p ∧ q
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Rules of inferences

Example
Let p be “I am a man.”
Let q be “I am smart.”

“I am a man.”
“I am smart.”

“Therefore, I am a smart man.”
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Rules of inferences

Resolution

Rule of inference Tautology
p ∨ q
¬p ∨ r ((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r)

∴ q ∨ r
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Rules of inferences

Example
Let p be “I love mathematics.”
Let q and r both be “I will have a math exam.”

“I love mathematics or I will have a math exam.”
“I do not love mathematics or I will have a math exam.”

“Therefore, I will have a math exam.”
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Using rules of inference

Example
Show that the premises

“It is not sunny this afternoon and it is colder than
yesterday,”
“We will go swimming only if it is sunny,”
“If we do not go swimming, then we will take a canoe
trip,”
“If we take a canoe trip, then we will be home by sunset”

lead to the conclusion
“We will be home by sunset.”



MATH 1190

Lili Shen

Rules of
inference

Introduction to
Proofs

Using rules of inference

Proof.
Let p be “It is sunny this afternoon,”
q “it is colder than yesterday,”
r “We will go swimming,”
s “We will take a canoe trip,”
t “We will be home by sunset.”

Then the premises are
¬p ∧ q,
r → p,
¬r → s,
s → t .

The conclusion is simply t .
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Using rules of inference

Step Reason
1. ¬p ∧ q Premise
2. ¬p Simplification
3. r → p Premise
4. ¬r Modus tollens
5. ¬r → s Premise
6. s Modus Ponens
7. s → t Premise
8. t Modus Ponens
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Rules of inference for quantified statements

Rule of inference Name
∀xP(x) Universal instantiation

∴ P(c)
P(c) for an arbitrary c Universal genearlization

∴ ∀xP(x)
∃xP(x) Existential instantiation

∴ P(c) for some element c
P(c) for some element c Existential generalization

∴ ∃xP(x)
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Revisiting the “mortal” example

Example
From the premises
∀x(Man(x)→ Mortal(x)),
Man(I),

we draw the conclusion “Mortal(I)” as:

Step Reason
1. ∀x(Man(x)→ Mortal(x)) Premise
2. Man(I)→ Mortal(I) Universal instantiation
3. Man(I) Premise
4. Mortal(I) Modus ponens
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Rules of inference for quantified statements

The reasoning in the above example can be simplified by
the following rule.

Universal modus ponens

∀x(P(x)→ Q(x))
P(a), where a is a particular element in the domain

∴ Q(a)
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Rules of inference for quantified statements

Similarly, we have the following rule.

Universal transitivity

Suppose that P(x), Q(x) and R(x) have the same domain.

∀x(P(x)→ Q(x))
∀x(Q(x)→ R(x))

∴ ∀x(P(x)→ R(x))
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Rules of inference for quantified statements

Proof.

Step Reason
1. ∀x(P(x)→ Q(x)) Premise
2. P(c)→ Q(c) for an arbitrary c Universal instantiation
3. ∀x(Q(x)→ R(x)) Premise
4. Q(c)→ R(c) for an arbitrary c Universal instantiation
5. P(c)→ R(c) for an arbitrary c Hypothetical syllogism
6. ∀x(P(x)→ R(x)) Universal generalization
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Revisiting the Lewis Carroll example

Example
Consider the premises:

“All hummingbirds are richly colored.”
“No large birds live on honey.”
“Birds that do not live on honey are dull in color.”

How do we get the conclusion “Hummingbirds are small”?
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Revisiting the Lewis Carroll example

Solution.
Let Hb(x), L(x), Ho(x) and C(x) be the propositional
functions “x is a hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively.

Premises:
∀x(Hb(x)→ C(x)).
¬∃x(L(x) ∧ Ho(x)).
∀x(¬Ho(x)→ ¬C(x)).

Conclusion:
∀x(Hb(x)→ ¬L(x)).
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Revisiting the Lewis Carroll example

Step Reason
1. ¬∃x(L(x) ∧ Ho(x)) Premise
2. ∀x¬(L(x) ∧ Ho(x)) De Morgan’s law
3. ∀x(¬L(x) ∨ ¬Ho(x)) De Morgan’s law
4. ∀x(¬Ho(x) ∨ ¬L(x)) Commutative law
5. ∀x(Ho(x)→ ¬L(x))
6. ∀x(¬Ho(x)→ ¬C(x)) Premise
7. ∀x(C(x)→ Ho(x))
8. ∀x(C(x)→ ¬L(x)) Universal transitivity
9. ∀x(Hb(x)→ C(x)) Premise
10. ∀x(Hb(x)→ ¬L(x)) Universal transitivity
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Terminologies

A proof is a valid argument that establishes the truth of
a statement.
A theorem is a statement that can be shown to be true
using:

definitions,
other theorems,
axioms,
rules of inference.

A lemma is a helping theorem or a result which is
needed to prove a theorem.
A corollary is a result which follows directly from a
theorem.
Less important theorems are sometimes called
propositions.
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Terminologies

A conjecture is a statement that is being proposed to
be true. Once a proof of a conjecture is found, it
becomes a theorem. It may turn out to be false.

Example (Goldbach’s conjecture)
Every even integer greater than 2 can be expressed as the
sum of two prime numbers.
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Even and odd integers

Definition
An integer n is even if there exists an integer k such
that n = 2k .
An integer n is odd if there exists an integer k such that
n = 2k + 1.
Two integers have the same parity if they are both even
or both odd; otherwise, they have opposite parity.
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Methods of proving theorems

Basic methods of proving theorems include:
direct proofs;
indirect proofs:

proofs by contraposition;
proofs by contradiction.
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Examples of direct proofs

Example

Prove that if n is an odd integer, then n2 is odd.



MATH 1190

Lili Shen

Rules of
inference

Introduction to
Proofs

Examples of direct proofs

Proof.
Assume that n is odd, then n = 2k +1 for an integer k . Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

where 2k2 + 2k is an integer. Thus n2 is an odd integer.
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Examples of direct proofs

Example
A real number r is rational if there exist integers p and q
with q 6= 0 such that r =

p
q

. Show that the sum of two

rational numbers is rational.
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Examples of direct proofs

Proof.
Assume that r and s are rational numbers. Then there must
be integers p,q and t ,u such that

r =
p
q
, s =

t
u
,

where q 6= 0 and u 6= 0. Then

r + s =
p
q
+

t
u
=

pu + qt
qu

,

where pu + qt and qu are integers and qu 6= 0. Thus the
sum r + s is rational.
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Examples of proofs by contraposition

Example

Show that if n is an integer and n2 is odd, then n is odd.
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Examples of proofs by contraposition

Proof.
Suppose that n is not odd, i.e., n is even, then there exists
an integer k such that n = 2k . Thus

n2 = 4k2 = 2(2k2).

Hence n2 is even, i.e., n2 is not odd.

Therefore, by contraposition, if n is an integer and n2 is odd,
then n is odd.
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Theorems that are biconditional statements

Example

Let n be an integer. Show that n is odd if and only if n2 is
odd.
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Theorems that are biconditional statements

Proof.
We have already shown that

if n is an odd, then n2 is odd;
if n2 is odd, then n is odd.

Therefore, n is odd if and only if n2 is odd.
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Examples of proofs by contradiction

Example
Prove that if you pick 22 days from the calendar, at least 4
must fall on the same day of the week.
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Examples of proofs by contradiction

Proof.
Assume that no more than 3 of the 22 days fall on the same
day of the week. Because there are 7 days in a week, we
could only have picked 21 days. This contradicts the
assumption that we have picked 22 days.
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A preview of Chapter 4

Example
A real number is called irrational if it is not rational. Show
that
√

2 is irrational.
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A preview of Chapter 4

Proof.

Suppose that
√

2 is rational, then there exist integers a and
b with

√
2 =

a
b

and b 6= 0 such that a and b have no
common divisors (will be explained in details in Chapter 4).
Then

2 =
a2

b2 2b2 = a2.

Therefore a2 must be even.
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A preview of Chapter 4

If a2 is even then a must be even (by a previous example).
Thus a = 2c for some integer c, and consequently

2b2 = 4c2, b2 = 2c2.

Therefore b2 is even. Again b must be even as well.
Since both a and b are even, they have a common divisor 2.
This contradicts to our assumption that a and b have no
common divisors. Hence

√
2 must be irrational.
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A preview of Chapter 4

Example
Prove that there is no largest prime number.

This proposition is equivalent to
There are infinitely many prime numbers.
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A preview of Chapter 4

Proof.
Assume that there is a largest prime number. Then we can
list all the prime numbers p1 = 2,p2 = 3, . . . ,pn from the
smallest to the largest pn. Let

r = p1 × p2 × · · · × pn + 1,

then none of the prime numbers p1,p2, . . . ,pn divides r .
Therefore, either r is a prime number or there is another
prime number q that divides r . The former contradicts to the
assumption that pn is the largest prime number, and the
latter contradicts to the assumption that all the prime
numbers are in the list p1,p2, . . . ,pn.
Therefore, there is no largest prime number.
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Recommended exercises

Section 1.6: 6, 16, 17, 18, 29.

Section 1.7: 6, 10, 11, 12, 13, 24, 28.
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