MATH 1190

Lili Shen

Set Operations

Introduction to Sets and Logic (MATH 1190)

Instructor: Lili Shen Email: shenlili@yorku.ca

Department of Mathematics and Statistics York University

Oct 16, 2014

▲□▶▲□▶▲□▶▲□▶ □ のQ@

	Outline
MATH 1190 Lili Shen	
Set Operations	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A preview of Boolean algebras

MATH 1190

Lili Shen

Set Operations

Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra, which is discussed in Chapter 12.

The operators in set theory are analogous to the corresponding operators in propositional calculus.

In this section, we fix a universal set U and assume that all the considered sets are subsets of U.

(日) (日) (日) (日) (日) (日) (日)

A preview of Boolean algebras

MATH 1190

Lili Shen

Set Operations

Definition

A Boolean Algebra is a set equipped with elements 1 and 0, binary operations \land and \lor , and a unary operation \neg , satisfying these identities:

•
$$a \wedge b = b \wedge a$$
, $a \vee b = b \vee a$;

•
$$a \wedge \neg a = 0, a \vee \neg a = 1;$$

•
$$a \wedge (b \wedge c) = (a \wedge b) \wedge c;$$

•
$$a \lor (b \lor c) = (a \lor b) \lor c;$$

•
$$a \wedge (a \vee b) = a;$$

•
$$a \lor (a \land b) = a;$$

•
$$a \land (b \lor c) = (a \land b) \lor (a \land c);$$

•
$$a \lor (b \land c) = (a \lor b) \land (a \lor c).$$

A preview of Boolean algebras

MATH 1190

Lili Shen

Set Operations The following table illustrates the similarity between propositional calculus and set operations.

Boolean	Propositional	Set operations
algebra	calculus	
Elements	Propositions	Sets <i>A</i> , <i>B</i> , <i>C</i>
a, b, c	<i>p</i> , <i>q</i> , <i>r</i>	
1	Tautology T	Universal set U
0	Contradiction F	Empty set Ø
∧	Conjunction \land	Intersection ∩
V	Disjunction V	Union \cup
-	Negation ¬	Complement ()

	nion
\mathbf{U}	THOLE

N /	<u>^</u>		4.4		2
IVI	41	н.		IЭ	u

Lili Shen

Set Operations

Definition

Let *A* and *B* be sets. The union of *A* and *B*, denoted by $A \cup B$, is the set

$$\{x \mid x \in A \lor x \in B\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Union

$A \cup B$ is shaded.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Intersection

MATH 1190

Lili Shen

Set Operations

Definition

Let *A* and *B* be sets. The intersection of *A* and *B*, denoted by $A \cap B$, is the set

$$\{x \mid x \in A \land x \in B\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A and B are said to be disjoint if their intersection is the empty set.

$A \cap B$ is shaded.

Complement

MATH 1190

Lili Shen

Set Operations

Definition

Let *A* be a set. The complement of *A* (with respect to the universal set *U*), denoted by \overline{A} , or A^c , or U - A, is the set

 $\{x \in U \mid x \notin A\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

\overline{A} is shaded.

Difference

MATH 1190

Lili Shen

Set Operations

Definition

Let *A* and *B* be sets. The difference of *A* and *B*, denoted by A - B, or $A \setminus B$, is the set

 $A \cap \overline{B} = \{ x \mid x \in A \land x \notin B \}.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Note that A - B and B - A are not the same.

A - B is shaded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proofs of set identities
Example
Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Proofs of set identities MATH 1190 Set Operations Proof. $x \in \overline{A \cap B} \leftrightarrow x \notin A \cap B$ $\leftrightarrow x \notin A \lor x \notin B$ $\leftrightarrow x \in \overline{A} \lor x \in \overline{B}$ $\leftrightarrow x \in \overline{A} \cup \overline{B}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proofs of set identities MATH 1190 Set Operations Example Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proofs of set identities

MATH 1190

Lili Shen

Set Operations Proof.

$\begin{array}{l} x \in A \cap (B \cup C) \leftrightarrow x \in A \land x \in B \cup C \\ \leftrightarrow x \in A \land (x \in B \lor x \in C) \\ \leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C) \\ \leftrightarrow x \in A \cap B \lor x \in A \cap C \\ \leftrightarrow x \in (A \cap B) \cup (A \cap C). \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fundamental set identities

MATH 1190

Lili Shen

Set Operations

- (Identity laws) $A \cap U = A$, $A \cup \emptyset = A$.
- (Domination laws) $A \cup U = U, A \cap \emptyset = \emptyset$.
- (Idempotent laws) $A \cup A = A$, $A \cap A = A$.
- (Complementation law) $\overline{\overline{A}} = A$.
- (Commutative laws) $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- (Associative laws) $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$.
- (Distributive laws) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- (De Morgan laws) $\overline{A \cap B} = \overline{A} \cup \overline{B}, \overline{A \cup B} = \overline{A} \cap \overline{B}.$
- (Absorption laws) $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$.
- (Negation laws) $A \cup \overline{A} = U, A \cap \overline{A} = \emptyset$.

Proofs of set identities MATH 1190 Set Operations Example Show that $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proofs of set identities MATH 1190 Set Proof. Operations $\overline{A \cap B \cap C} = \overline{(A \cap B) \cap C}$ $=\overline{A\cap B}\cup\overline{C}$ $=(\overline{A}\cup\overline{B})\cup\overline{C}$ $=\overline{A}\cup\overline{B}\cup\overline{C}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

MATH 1190

Lili Shen

Set Operations

Let A_1, A_2, \ldots, A_n be an indexed collection of sets. We define:

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n},$$
$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n}.$$

These are well defined, since union and intersection are associative.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MATH 1190

Lili Shen

Set Operations

Example

For
$$i = 1, 2, ..., let A_i = \{i, i + 1, i + 2, ...\}$$
. Then

$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\} = A_{1} = \mathbf{Z}^{+},$$

$$\bigcap_{i=1}^{n} A_{i} = \bigcap_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{n, n+1, n+2, \dots\} = A_{n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

MATH 1190

Lili Shen

Set Operations

Let A_1, A_2, \ldots be a sequence of sets. We define:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots \cup A_n \cup \ldots,$$
$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \cdots \cap A_n \cap \ldots.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

MATH 1190

Lili Shen

Set Operations More generally, let *I* be a set, and A_i a set for each $i \in I$. We define

$$\bigcup_{i\in I} A_i = \{x \mid \exists i \in I (x \in A_i)\},$$
$$\bigcap_{i\in I} A_i = \{x \mid \forall i \in I (x \in A_i)\}.$$

Therefore,

$$igcup_{i=1}^{\infty} A_i = \{x \mid \exists i \in \mathbf{Z}^+ (x \in A_i)\},$$

 $igcap_{i=1}^{\infty} A_i = \{x \mid \forall i \in \mathbf{Z}^+ (x \in A_i)\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

MATH 1190

Lili Shen

Set Operations

Example

For
$$i = 1, 2, \dots$$
, let $A_i = \{i, i + 1, i + 2, \dots\}$. Then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\} = A_1 = \mathbf{Z}^+,$$

$$\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \{i, i+1, i+2, \dots\} = \emptyset.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MATH 1190

Lili Shen

Set Operations

Example

For i = 1, 2, ..., let $A_i = (0, i)$, i.e., the set of real number x with 0 < x < i. Then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (0,i) = (0,\infty) = \mathbf{R}^+,$$

$$\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} (0, i) = (0, 1) = A_1.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

	Recommended exercises
MATH 1190 Lili Shen	
Set Operations	
	Section 2.2: 14, 16, 19, 24, 31, 48, 50.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶