Introduction to Sets and Logic (MATH 1190)

Instructor: Lili Shen
Email: shenlil@yorku.ca

Department of Mathematics and Statistics
York University
Oct 16, 2014

Outline

MATH 1190
Lili Shen

Set
Operations

(1) Set Operations

A preview of Boolean algebras

Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra, which is discussed in Chapter 12.

The operators in set theory are analogous to the corresponding operators in propositional calculus.

In this section, we fix a universal set U and assume that all the considered sets are subsets of U.

A preview of Boolean algebras

Definition

A Boolean Algebra is a set equipped with elements 1 and 0 , binary operations \wedge and \vee, and a unary operation \neg, satisfying these identities:

- $a \wedge 1=a, a \vee 0=a$;
- $a \wedge b=b \wedge a, a \vee b=b \vee a$;
- $a \wedge \neg a=0, a \vee \neg a=1$;
- $a \wedge(b \wedge c)=(a \wedge b) \wedge c$;
- $a \vee(b \vee c)=(a \vee b) \vee c$;
- $a \wedge(a \vee b)=a$;
- $a \vee(a \wedge b)=a$;
- $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$;
- $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.

A preview of Boolean algebras

The following table illustrates the similarity between propositional calculus and set operations.

Boolean algebra	Propositional calculus	Set operations
Elements $a, b, c \ldots$	Propositions $p, q, r \ldots$	Sets $A, B, C \ldots$
1	Tautology T	Universal set U
0	Contradiction F	Empty set \varnothing
\wedge	Conjunction \wedge	Intersection \cap
\vee	Disjunction \vee	Union \cup
\neg	Negation \neg	Complement $\overline{()}$

Union

Definition

Let A and B be sets. The union of A and B, denoted by $A \cup B$, is the set

$$
\{x \mid x \in A \vee x \in B\}
$$

Union

Lili Shen

Set
Operations

$A \cup B$ is shaded.

Intersection

Definition

Let A and B be sets. The intersection of A and B, denoted by $A \cap B$, is the set

$$
\{x \mid x \in A \wedge x \in B\}
$$

A and B are said to be disjoint if their intersection is the empty set.

Intersection

$A \cap B$ is shaded.

Complement

Definition

Let A be a set. The complement of A (with respect to the universal set U), denoted by \bar{A}, or A^{C}, or $U-A$, is the set

$$
\{x \in U \mid x \notin A\}
$$

Complement

Lili Shen

Set
Operations

\bar{A} is shaded.

Difference

Definition

Let A and B be sets. The difference of A and B, denoted by $A-B$, or $A \backslash B$, is the set

$$
A \cap \bar{B}=\{x \mid x \in A \wedge x \notin B\} .
$$

Note that $A-B$ and $B-A$ are not the same.

Intersection

$A-B$ is shaded.

Proofs of set identities

Example

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Proofs of set identities

Proof.

$$
\begin{aligned}
x \in \overline{A \cap B} & \leftrightarrow x \notin A \cap B \\
& \leftrightarrow x \notin A \vee x \notin B \\
& \leftrightarrow x \in \bar{A} \vee x \in \bar{B} \\
& \leftrightarrow x \in \bar{A} \cup \bar{B} .
\end{aligned}
$$

Proofs of set identities

MATH 1190
Lili Shen

Set
Operations

Example

Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proofs of set identities

Proof.

$$
\begin{aligned}
x \in A \cap(B \cup C) & \leftrightarrow x \in A \wedge x \in B \cup C \\
& \leftrightarrow x \in A \wedge(x \in B \vee x \in C) \\
& \leftrightarrow(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C) \\
& \leftrightarrow x \in A \cap B \vee x \in A \cap C \\
& \leftrightarrow x \in(A \cap B) \cup(A \cap C) .
\end{aligned}
$$

Fundamental set identities

- (Identity laws) $A \cap U=A, A \cup \varnothing=A$.
- (Domination laws) $A \cup U=U, A \cap \varnothing=\varnothing$.
- (Idempotent laws) $A \cup A=A, A \cap A=A$.
- (Complementation law) $\overline{\bar{A}}=A$.
- (Commutative laws) $A \cup B=B \cup A, A \cap B=B \cap A$.
- (Associative laws) $(A \cup B) \cup C=A \cup(B \cup C)$, $(A \cap B) \cap C=A \cap(B \cap C)$.
- (Distributive laws) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$, $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
- (De Morgan laws) $\overline{A \cap B}=\bar{A} \cup \bar{B}, \overline{A \cup B}=\bar{A} \cap \bar{B}$.
- (Absorption laws) $A \cup(A \cap B)=A, A \cap(A \cup B)=A$.
- (Negation laws) $A \cup \bar{A}=U, A \cap \bar{A}=\varnothing$.

Proofs of set identities

Example

Show that

$$
\overline{A \cap B \cap C}=\bar{A} \cup \bar{B} \cup \bar{C} .
$$

Proofs of set identities

Proof.

$$
\begin{aligned}
\overline{A \cap B \cap C} & =\overline{(A \cap B) \cap C} \\
& =\overline{A \cap B \cup \bar{C}} \\
& =(\bar{A} \cup \bar{B}) \cup \bar{C} \\
& =\bar{A} \cup \bar{B} \cup \bar{C} .
\end{aligned}
$$

Generalized union and intersections

Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets. We define:

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}, \\
& \bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n} .
\end{aligned}
$$

These are well defined, since union and intersection are associative.

Generalized union and intersections

MATH 1190
Lili Shen

Set
Operations

Example

For $i=1,2, \ldots$, let $A_{i}=\{i, i+1, i+2, \ldots\}$. Then

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n}\{i, i+1, i+2, \ldots\}=\{1,2,3, \ldots\}=A_{1}=\mathbf{Z}^{+} \\
& \bigcap_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n}\{i, i+1, i+2, \ldots\}=\{n, n+1, n+2, \ldots\}=A_{n}
\end{aligned}
$$

Generalized union and intersections

MATH 1190
Lili Shen

Set
Operations

Let A_{1}, A_{2}, \ldots be a sequence of sets. We define:

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup \ldots, \\
& \bigcap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n} \cap \ldots
\end{aligned}
$$

Generalized union and intersections

MATH 1190
Lill Shen

Set
Operations

More generally, let I be a set, and A_{i} a set for each $i \in I$. We define

$$
\begin{aligned}
& \bigcup_{i \in I} A_{i}=\left\{x \mid \exists i \in I\left(x \in A_{i}\right)\right\}, \\
& \bigcap_{i \in I} A_{i}=\left\{x \mid \forall i \in I\left(x \in A_{i}\right)\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=\left\{x \mid \exists i \in \mathbf{Z}^{+}\left(x \in A_{i}\right)\right\} \\
& \bigcap_{i=1}^{\infty} A_{i}=\left\{x \mid \forall i \in \mathbf{Z}^{+}\left(x \in A_{i}\right)\right\} .
\end{aligned}
$$

Generalized union and intersections

MATH 1190
Lili Shen

Set
Operations

Example

For $i=1,2, \ldots$, let $A_{i}=\{i, i+1, i+2, \ldots\}$. Then

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty}\{i, i+1, i+2, \ldots\}=\{1,2,3, \ldots\}=A_{1}=\mathbf{Z}^{+}
$$

$$
\bigcap_{i=1}^{\infty} A_{i}=\bigcap_{i=1}^{\infty}\{i, i+1, i+2, \ldots\}=\varnothing .
$$

Generalized union and intersections

MATH 1190
Lili Shen

Set
Operations

Example

For $i=1,2, \ldots$, let $A_{i}=(0, i)$, i.e., the set of real number x with $0<x<i$. Then

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty}(0, i)=(0, \infty)=\mathbf{R}^{+} \\
& \bigcap_{i=1}^{\infty} A_{i}=\bigcap_{i=1}^{\infty}(0, i)=(0,1)=A_{1} .
\end{aligned}
$$

Recommended exercises

Section 2.2: 14, 16, 19, 24, 31, 48, 50.

