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Definition
Let A and B be nonempty sets. A function (or map,
mapping, transformation)

f : A // B

is an assignment of each element a ∈ A to exactly one
element of b = f (a) ∈ B.



MATH 1190

Lili Shen

Functions

Sequences

Functions

For each function f : A // B, we define its graph as a
subset of A× B, i.e., a relation from A to B, given by

Graph f = {(a,b) | a ∈ A and b ∈ B and b = f (a)}.

On the contrary, a relation R ⊆ A× B is the graph of a
function f : A // B, if and only if R contains one, and only
one ordered pair (a,b) for every element a ∈ A:

∀x(x ∈ A→ ∃!y(y ∈ B ∧ (x , y) ∈ R)).

Therefore, a function f : A // B can also be defined as a
relation (satisfying the above requirement) from A to B.
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Given a function f : A // B:
We say f maps A to B or f is a mapping from A to B.
A is called the domain of f .
B is called the codomain of f .
Let S ⊆ A. The image of S under f , denoted by f→(S),
is a subset of B

f→(S) = {b ∈ B | ∃s ∈ S(b = f (s))}.

In particular, f (A) is called the range of f , i.e.,

f→(A) = {b ∈ B | ∃a ∈ A(b = f (a))}.
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Let T ⊆ B. The preimage (or inverse image) of T under
f , denoted by f←(T ), is a subset of A

f←(T ) = {a ∈ A | f (a) ∈ T}.

In particular, if f (a) = b, then
b is called the image of a under f , i.e.,

{b} = f→({a}).

a is called a preimage (or an inverse image) of b under
f , i.e.,

a ∈ f←({b}).

Two functions f : A // B and g : A′ // B′ are equal if
and only if

A = A′ ∧ B = B′ ∧ ∀a ∈ A(f (a) = g(a)).
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Example
Consider a function f : A // B with the following
assignments:

A = {a,b, c,d} B = {x , y , z}

a

b

c

d

x

y

z
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Determine:
(1) f (a).
(2) The image of d .
(3) The domain of f .
(4) The codomain of f .
(5) The preimage of {x}.
(6) The preimage of {z}.
(7) The image of the subset {a,b} ⊆ A.
(8) The range of f .
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Solution.
(1) f (a) = z.
(2) The image of d is z.
(3) The domain of f is A = {a,b, c,d}.
(4) The codomain of f is B = {x , y , z}.
(5) The preimage of {x} is ∅.
(6) The preimage of {z} is {a, c,d}.
(7) The image of the subset {a,b} ⊆ A is {y , z}.
(8) The range of f is {y , z}.
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A function is called real-valued if the codomain is the set of
real numbers. Let f ,g : A // R be two real-valued
functions, then f + g and fg are also real-valued functions
defined by

(f + g)(a) = f (a) + g(a),

(fg)(a) = f (a)g(a)

for all a ∈ A.
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Example
Let f ,g : R // R be real-valued functions such that
f (x) = x2 and g(x) = x − x2, then

(f + g)(x) = f (x) + g(x) = x

and
(fg)(x) = f (x)g(x) = x2(x − x2) = x3 − x4.
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Definition
A function f : A // B is said to be one-to-one, or injective,
or an injection, if

∀a ∈ A ∀b ∈ A(f (a) = f (b)→ a = b).

Please note that there is a misspelled word in Definition 5
on Page 141 of the textbook:

injunction should be injection.
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Definition
A function f : A // B is said to be onto, or surjective, or a
surjection, if

∀b ∈ B ∃a ∈ A(b = f (a)).
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Definition
A function f is a one-to-one correspondence, or bijective, or
a bijection, if it is both one-to-one and onto (injective and
surjective).

It is easy to see that, a function f : A // B is bijective if and
only if

∀b ∈ B ∃!a ∈ A(b = f (a)).
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Example
Determine whether the following real-valued functions
f : R // R are injective or surjective:
(1) f (x) = x + 1.
(2) f (x) = x2.

(3) f (x) =

{
x + 1, (x < 0)
x − 1. (x ≥ 0)

(4) f (x) = ex .
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Solution.
(1) f is injective, since for every x , y ∈ R, if f (x) = f (y),

then
x + 1 = y + 1,

and it follows that x = y .

f is surjective, since for every y ∈ R, there exists
x = y − 1 such that

f (x) = f (y − 1) = (y − 1) + 1 = y .

Thus f is bijective.
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(2) f is not injective, since there exists x = −1 and y = 1
such that x 6= y , but

f (x) = f (−1) = 1 = f (1) = f (y).

f is not surjective, since there exists y = −1 such that

f (x) = x2 6= −1

for all x ∈ R.
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(3) f is not injective, since there exists x = −1 and y = 1
such that x 6= y , but

f (x) = f (−1) = 0 = f (1) = f (y).

f is surjective, since for every y ∈ R:
if y ≥ −1, then y + 1 ≥ 0 and

f (y + 1) = (y + 1)− 1 = y ;

if y < −1, then y − 1 < 0 and

f (y − 1) = (y − 1) + 1 = y .

Thus for every y ∈ R, there exits some x ∈ R such that
f (x) = y .
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(4) f is injective, since for every x , y ∈ R, if f (x) = f (y),
then

ex = ey ,

and it follows that

x = ln ex = ln ey = y .

f is not surjective, since there exists y = −1 such that

f (x) = ex 6= −1

for all x ∈ R.
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Showing that f is injective or surjective

The following is a summary for the methods used in the
previous example. Let f : A // B be a function:

To show that f is injective: Show that for all x , y ∈ A,
f (x) = f (y) implies x = y .
To show that f is not injective: Show that there exist
x , y ∈ A such that x 6= y and f (x) = f (y).
To show that f is surjective: Show that for all y ∈ B,
there exists x ∈ A such that f (x) = y .
To show that f is not surjective: Show that there exists
y ∈ B such that f (x) 6= y for all x ∈ A.
To show that f is bijective: Show that f is both injective
and surjective.
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Definition
Let f : A // B be a bijection. The inverse function of f is a
function f−1 : B // A satisfying

f−1(b) = a↔ f (a) = b

for all b ∈ B and a ∈ A.

A bijection is also called an invertible function because we
can define its inverse. A function is not invertible if it is not a
bijection.
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Example

In our previous example, f : R // R given by f (x) = x + 1
is invertible, and its inverse is given by

f−1(y) = y − 1.

Both f (x) = x2, f (x) =

{
x − 1, (x ≥ 0)
x + 1 (x < 0)

and f (x) = ex are

not invertible.
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However, if we restrict the codomain of f (x) = ex to R+, i.e.,
consider it as a function

g(x) = ex : R // R+,

then g is a bijection and has a inverse

g−1(x) = ln x : R+ // R.

It is noteworthy to point out that

f (x) = ex : R // R and g(x) = ex : R // R+

are different functions, because their codomains are
different.
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Definition
Let f : A // B and g : C // D be functions. If

f→(A) ⊆ C,

Then the composition of g and f is a function g ◦ f : A //D
satisfying

(g ◦ f )(a) = g(f (a))

for all a ∈ A.
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Example

Consider functions f ,g : R // R given by f (x) = x2 and
g(x) = 2x + 1, then

(f ◦ g)(x) = (2x + 1)2,

(g ◦ f )(x) = 2x2 + 1.
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Example

Consider functions f : R+ // R, g : R // R given by
f (x) = ln x and g(x) = 1 + x , then the composition

g ◦ f : R+ // R

is given by
(g ◦ f )(x) = 1 + ln x .

But the composition f ◦ g does not exist because the range
of g is R, which is not a subset of the domain of f .
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However, if we change the domain of g to (−1,∞), then the
range of the new function

g : (−1,∞) // R

is R+ = (0,∞), and now we have the composition

f ◦ g : (−1,∞) // R

as
(f ◦ g)(x) = ln(1 + x).



MATH 1190

Lili Shen

Functions

Sequences

Outline

1 Functions

2 Sequences



MATH 1190

Lili Shen

Functions

Sequences

Sequences

Definition
A sequence is a function from a subset of the integers to a
set S. Usually we take a function

f : N // S

or
f : Z+ // S

as a sequence, and we use the notation

an = f (n)

to denote the image of the integer n under f . We call each
an a term of the sequence.
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Example
Consider the function

f : Z+ // R

given by

f (n) =
1
n
,

then we have a real sequence (i.e., a sequence whose
terms are all real numbers) {an} given by

a1 = 1,a2 =
1
2
,a3 =

1
3
, . . . ,an =

1
n
, . . . .
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Definition
A geometric progression (or geometric sequence) is a
sequence of the form

a,ar ,ar2, . . . ,arn, . . .

where the initial term a and the common ratio r are real
numbers.
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A geometric progression can be viewed as restricting the
domain of the exponential function

f (x) = ar x : R // R

to N, and thus obtain

f (n) = arn : N // R.
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A real sequence {an} is a geometric progression if and only
if an+1

an
= r

for some constant r for all terms an and an+1.

Example
The following sequences are all geometric progressions:

1,−1,1,−1,1, . . . ;
2,10,50,250,1250, . . . ;

6,2,
2
3
,
2
9
,

2
27

, . . . .
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Definition
An arithmetic progression (or arithmetic sequence) is a
sequence of the form

a,a + d ,a + 2d , . . . ,a + nd , . . .

where the initial term a and the common difference d are
real numbers.



MATH 1190

Lili Shen

Functions

Sequences

Arithmetic progression

An arithmetic progression can be viewed as restricting the
domain of the linear function

f (x) = a + dx : R // R

to N, and thus obtain

f (n) = a + nd : N // R.
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A real sequence {an} is an arithmetic progression if and
only if

an+1 − an = d

for some constant d for all terms an and an+1.

Example
The following sequences are both arithmetic progressions:
−1,3,7,11, . . . ;
7,4,1,−2, . . . .
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Recurrence relations

A recurrence relation for a sequence {an} is an
equation that expresses an in terms of one or more of
the previous terms a0,a1, . . . ,an−1 of the sequence for
all integers n ≥ n0, where n0 is a nonnegative integer.
A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation. Note that
solutions are usually not unique without the initial
conditions.
The initial conditions for a sequence specify the terms
that precede the first term where the recurrence
relation takes effect.
We say that we solved the recurrence relation together
with the initial conditions when we find an explicit
formula, called a closed formula.
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Definition
The Fibonacci Sequence {fn} is defined by the following
recurrence relation and initial conditions.
(1) fn = fn−1 + fn−2.
(2) f0 = 0, f1 = 1.
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The closed formula for the Fibonacci Sequence is

fn =

(1 +
√

5
2

)n
−
(1−

√
5

2

)n

√
5

,

which can be obtained by many ways.
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It is easy to calculate that the first several terms of the
Fibonacci Sequence are:

0,1,1,2,3,5,8,13, . . . .

We also find that

f2
f1

=
1
1
= 1,

f3
f2

=
2
1
= 2,

f4
f3

=
3
2
= 1.5,

f5
f4

=
5
3
≈ 1.667,

f6
f5

=
8
5
= 1.6,

f7
f6

=
13
8

= 1.625,

. . . . . .
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Indeed, by the knowledge of calculus we have that

lim
n→∞

fn+1

fn
=

√
5 + 1
2

≈ 1.618

This number is known as the golden ratio, which is believed
as the key to creating aesthetically pleasing art by many
artists and architects.
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Solving recurrence relations

Example
Solve the following recurrence relation and initial condition.{

an = nan−1,

a1 = 1.
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Solving recurrence relations

Solution.

an = nan−1

= n(n − 1)an−2

= . . .

= n(n − 1) . . . 2 · a1

= n(n − 1) . . . 2 · 1

We denote n! = n(n − 1) . . . 2 · 1 and call it the factorial of n.
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Example
Solve the following recurrence relation and initial condition.{

an = an−1 + d ,
a0 = a.

The answer of this example is a closed formula for the terms
of an arithmetic progression with initial term a0 = a and
common difference d .



MATH 1190

Lili Shen

Functions

Sequences
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Solution.
Since an − an−1 = d for all n ∈ Z+, {an} is an arithmetic
progression. The solution is

an = an−1 + d
= an−2 + 2d
= . . .

= a1 + (n − 1)d
= a0 + nd
= a + nd .
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Example
Solve the following recurrence relations and initial
conditions.

(1)

{
an = an−1 + 3,
a0 = 2.

(2)

{
an = an−1 + 3,
a1 = 2.
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Solving recurrence relations

Solution.
(1) Since an − an−1 = 3 for all n ∈ Z+, {an} is an arithmetic

progression with common difference 3 and initial term
a0 = 2. Thus

an = 2 + 3n.

(2) Since an − an−1 = 3 for all n ∈ Z+, {an} is an arithmetic
progression with common difference 3 and initial term
a1 = 2. Thus

an = 2 + 3(n − 1) = 3n − 1.
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Example
Solve the following recurrence relation and initial condition.{

an = ran−1,

a0 = a.

The answer of this example is a closed formula for the terms
of a geometric progression with initial term a0 = a and
common ratio r .
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Solution.

Since
an

an−1
= r for all n ∈ Z+, {an} is a geometric

progression. The solution is

an = an−1r

= an−2r2

= . . .

= a1rn−1

= a0rn

= arn.
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Example
Solve the following recurrence relations and initial
conditions.

(1)

{
an = −an−1,

a0 = 5.

(2)

{
an = −an−1,

a2 = 5.
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Solution.

(1) Since
an

an−1
= −1 for all n ∈ Z+, {an} is a geometric

progression with common ratio −1 and initial term
a0 = 5. Thus

an = 5 · (−1)n.

(2) Since
an

an−1
= −1 for all n ∈ Z+, {an} is a geometric

progression with common ratio −1 and initial term
a2 = 5. Thus

an = 5 · (−1)n−2 = 5 · (−1)n.
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Solving recurrence relations

Example
Solve the following recurrence relation and initial condition.{

an = 2an−1 − 3,
a0 = −1.
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Solving recurrence relations

Solution.
From the recurrence relation we have that

an − 2an−1 = −3, (1)
an−1 − 2an−2 = −3. (2)

and the first two terms are

a0 = −1, a1 = 2a0 − 3 = −5.

Thus by (1)− (2) we obtain

an − an−1 = 2(an−1 − an−2).
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Thus an − an−1 is a geometric progression with common
ratio 2 and initial term a1 − a0 = −4, and consequently

an − an−1 = −4 · 2n−1 = −2n+1. (3)

Therefore, by (3) · 2− (1) we have

an = −2n+2 + 3.
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Example
Solve the following recurrence relation and initial condition.{

an = −an−1 + n − 1,
a0 = 7.



MATH 1190

Lili Shen

Functions

Sequences
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Solution.
From the recurrence relation we have that

an + an−1 = n − 1, (4)
an−1 + an−2 = n − 2. (5)

and the first two terms are

a0 = 7, a1 = −7.

By (4)− (5) we have

an − an−2 = 1.
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This means that the even terms and odd terms of {an} are
respectively an arithmetic progression with common
difference 1. Explicitly,

if n = 2k for some nonnegative integer k , then
{bk} = {a2k} is an arithmetic progression with common
difference 1 and initial term b0 = a0 = 7, and it follows
that

a2k = bk = k + 7.

if n = 2k + 1 for some nonnegative integer k , then
{ck} = {a2k+1} is an arithmetic progression with
common difference 1 and initial term c0 = a1 = −7, and
it follows that

a2k+1 = ck = k − 7.
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Therefore,

an =

{
k + 7, (n = 2k)
k − 7. (n = 2k + 1)

Or equivalently,

an =


n
2
+ 7, (n is even)

n − 15
2

. (n is odd)
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Recommended exercises

Section 2.3: 6, 22, 28, 39, 69.

Section 2.4: 10, 12, 16.
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