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Quiz announcement

The second quiz will be held on Thursday, Nov 20, 9-10 pm
in class. The contents in our lecture notes from Oct 9 to Nov
13 will be covered. Relevant material in textbook is Section
2.1-2.5 and some sections in Chapter 4 (depending on how
much we learn on Nov 13).

Tips for quiz preparation: focus on lecture notes and
recommended exercises.

All the rules are the same as Quiz 1. Please check the
lecture note on Oct 9 for details.
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Summation notation

Given the terms
am,am+1, . . . ,an

from a real sequence {an}, we use the notation

n∑
j=m

aj or
∑

m≤j≤n

aj

to represent
am + am+1 + · · ·+ an.

Here, the variable j is called the index of summation, which
runs through all the integers starting with its lower limit m
and upper limit n.
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Summation notation

The choice of the letter j as the index of summation is
arbitrary, i.e.,

n∑
j=m

aj =
n∑

i=m

ai =
n∑

k=m

ak .

More generally, the summation∑
j∈S

aj

represents the sum of all aj for j ∈ S. For example,

n∑
j=m

aj =
∑

j∈{m,m+1,...,n}
aj .
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Examples of summations

Example

8∑
k=4

(−1)k = (−1)4 + (−1)5 + (−1)6 + (−1)7 + (−1)8

= 1− 1 + 1− 1 + 1
= 1.
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Example

Let S = {2,5,7,10}, then∑
j∈S

j2 = 22 + 52 + 72 + 102

= 4 + 25 + 49 + 100
= 178.
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Example (Double summation)

4∑
i=1

3∑
j=1

ij =
4∑

i=1

(i + 2i + 3i)

=
4∑

i=1

6i

= 6 + 12 + 18 + 24
= 60.
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Sums of terms of geometric progressions

Theorem
Let a and r be real numbers with r 6= 0. Then

n∑
k=0

ar k =


arn+1 − a

r − 1
, (r 6= 1),

(n + 1)a, (r = 1).
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Sums of terms of geometric progressions

Proof.

Let Sn =
n∑

k=0

ar k . Then

Sn = a + ar + ar2 + · · ·+ arn−1 + arn, (1)

rSn = ar + ar2 + · · ·+ arn−1 + arn + arn+1. (2)

By (2)− (1) we obtain

(r − 1)Sn = arn+1 − a.

Thus Sn =
arn+1 − a

r − 1
when r 6= 1.

If r = 1, it is easy to see that Sn = (n + 1)a.
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Sums of terms of arithmetic progressions

Theorem

(1)
n∑

k=1

k =
n(n + 1)

2
.

(2) Let a and d be real numbers. Then

n∑
k=0

(a + kd) = (n + 1)a +
n(n + 1)

2
d .
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Sums of terms of arithmetic progressions

proof.

(1) Let Sn =
n∑

k=0

k . Then

Sn = 1 + 2 + · · ·+ (n − 1) + n, (3)
Sn = n + (n − 1) + · · ·+ 2 + 1. (4)

By (3) + (4) we obtain

2Sn = n(n + 1).

Thus Sn =
n(n + 1)

2
.
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(2)

n∑
k=0

(a + kd) =
n∑

k=0

a +
n∑

k=0

kd

= (n + 1)a + d
n∑

k=1

k

= (n + 1)a +
n(n + 1)

2
d .
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The size of sets

A natural question in set theory is: how do we compare the
size (i.e., the number of elements) of two sets?

Recall that the cardinality of a finite set A, denoted by |A|, is
the number of (distinct) elements of A. For example:
|{1,2,3}| = 3.
Let S be the set of letters of the English alphabet. Then
|S| = 26.
|∅| = 0.

Therefore, comparing the size of two finite sets is solved:
just count the number of elements in each set.



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

The size of sets

However, how can we compare the size of two infinite sets?
In order to achieve this, we need to find another way of
comparing the size of sets.

Example
Let A be the set of students in our classroom, and B the set
of chairs. Can you tell which set has a larger cardinality,
without counting the number of students and chairs?



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

The size of sets

Solution.
Let every student sit in exactly one chair:

if every student finds a chair, and there are no spare
chairs, then |A| = |B|;
if every student finds a chair, and there are some spare
chairs, then |A| < |B|;
if all the chairs are occupied, and some students are
standing, then |A| > |B|.
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The size of sets

In the language of set theory, if every student is sitting on
exactly one chair, and there are no spare chairs, then we
establish a bijection (i.e., a one-to-one correspondence)
between the set A of students and the set B of chairs.

In other words, we may prove

“two sets have the same size”

by establishing a bijection between them, without counting
their number of elements. This way also works for infinite
sets.
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Cardinality

Definition
Let A and B be two sets.

If there is a bijection (i.e., a one-to-one
correspondence) from A to B, then we say A and B
have the same cardinality, and write |A| = |B|, .
If there is an injection (i.e., a one-to-one function) from
A to B, the we say the cardinality of A is less than or the
same as the cardinality of B, and write |A| ≤ |B|.
If there is an injection from A to B, and there is no
bijection between A and B, then we say the cardinality
of A is less than the cardinality of B, and write |A| < |B|.
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Countable sets

Definition
A set that is either finite or has the same cardinality as
the set of positive integers (Z+) is called countable.
If a set S is countably infinite, we denote the cardinality
of S by |S| = ℵ0.
A set that is not countable is called uncountable.
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Countable sets

The terminology “cardinality” is used characterize the
number of elements in a set. That is, if two sets have the
same cardinality, then they have the same number of
elements.

From our intuition, a set has more elements than its proper
subset. This is true for finite sets.
However, we must be extremely cautious when referring to
infinite sets: an infinite set and its proper subset may have
the same cardinality!
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Examples of countably infinite sets

Example

Let S be the set of odd positive integers. Then |S| = ℵ0,
since

f : Z+ // S

given by
f (n) = 2n − 1

is a bijection.



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

Hilbert’s Grand Hotel

Example (Hilbert’s Grand Hotel)
Every hotel on earth has only finitely many rooms. If all
rooms of a hotel are occupied and a new guest arrives, this
guest cannot be accommodated without evicting a current
guest.

Now suppose that we have a Grand Hotel with countably
infinitely many rooms, each occupied by a guest.

If a new guest arrives, the manager moves the guest
occupying room 1 to room 2, the guest occupying room
2 to room 3 and so on, and fit the newcomer into room
1.
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Hilbert’s Grand Hotel

If 10 new guests arrive, the manager moves the guest
occupying room 1 to room 11, the guest occupying
room 2 to room 12 and so on, and fit the newcomers
into the first 10 rooms.
If a countably infinite number of new guests arrive, the
manager moves the person occupying room 1 to room
2, the guest occupying room 2 to room 4, and, in
general, the guest occupying room n to room 2n, and
all the odd-numbered rooms (which are countably
infinite) will be free for the new guests.



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

Countable sets

From the definition we know that an infinite set S is
countable if and only if there is a bijection

f : Z+ // S.

Recall that the bijection f exactly defines a sequence (see
Page 29 of the lecture note on Oct 23)

an = f (n), n = 1,2, . . .

Therefore, S is countable if and only if there exists a
sequence {an}, such that every element of S is a term of
{an}.
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Examples of countably infinite sets

Example
The set of odd positive integers is countable, since we have
a sequence

1,3,5,7,9, . . .

that lists all the odd positive integers.



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

Examples of countably infinite sets

Example
In general, if A is a countable set, then every subset of A is
countable. Because we can list the elements of A as
(possibly ending after a finite number of terms)

a1,a2, . . . ,an, . . . .

Every subset S ⊆ A consists of some (or none, or all) of the
terms in this sequence, and we can pick them out and list
them in the same order as a new sequence. Thus S is also
countable.
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Examples of countably infinite sets

Example
The set Z of integers is countable, since we have a
sequence

0,1,−1,2,−2,3,−3, . . .

that lists all the integers.
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Examples of countably infinite sets

Example

The set of rational numbers in the closed interval [0,1] is
countable, since we have a sequence

0,1,
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
1
5
, . . .

that lists all the rational numbers in [0,1].
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Countable sets

Theorem
If A and B are countable sets, then so is A ∪ B.
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Countable sets

Proof.
There are three cases:

If A and B are both finite, then A ∪ B is also finite, thus
countable.
If one of A and B is countably infinite, suppose A can
be listed in an infinite sequence a1,a2, . . . ,an, . . . and
B has finitely many elements b1,b2, . . . ,bm, then we
can list the elements of A ∪ B as

b1,b2, . . . ,bm,a1,a2, . . . ,an, . . . .



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

Countable sets

If both A and B are countably infinite, then we can list
the elements of A and B respectively as

a1,a2, . . . ,an, . . . ,

b1,b2, . . . ,bn, . . . .

Therefore, we can list the elements of A ∪ B as

a1,b1,a2,b2, . . . ,an,bn, . . . .
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Theorem
If for each i ∈ Z+, Ai is a countable set, then

∞⋃
i=1

Ai

is a countable set.
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Countable sets

Proof.
We only prove the case that each Ai (i ∈ Z+) is countably
infinite. In this case, we can list the elements of each Ai as

ai1,ai2, . . . ,ain, . . . .

Therefore, we can list the elements of
∞⋃

i=1

Ai as

a11,a21,a12,a13,a22,a31,a41,a32,a23,a14, . . . .
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Countable sets

The following diagram illustrates the listing of elements in
∞⋃

i=1

Ai in the last proof:

a11

a21
��

a21

a12<<yyyyy

a12 a13
// a13

a22
||yy
yy
y

a22

a31
||yy
yy
y

a31

a41
��

a41

a32<<yyyyy

a32

a23<<yyyyy

a23

a14<<yyyyy

a14 . . .//

a24 . . .

a33 a34 . . .

a42 a43 a44 . . .

...
...

...
...
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Examples of countable sets

Example

We have known that the rational numbers in [0,1] is
countable. Similarly, the rational numbers in any closed
interval [n,n + 1] with n ∈ Z is countable. Therefore, the set
Q of all rational numbers

Q =
⋃
n∈Z

{q | q is a rational number in [n,n + 1]}

is countable.

Surprisingly, the set of Q of rational numbers has as many
elements as the set Z+ of positive integers!
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Example
The set R of real numbers is uncountable.

We shall use the famous Cantor diagonalization argument
to prove it.
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Proof.
It suffices to show that the open interval (0,1) is
uncountable. Now we write every real number in (0,1) as
an infinite decimal:

r = 0.a1a2a3 . . . ,

where ai ∈ {0,1,2, . . . ,9}. Suppose that we can list the real
numbers in (0,1) as

r1, r2, r3, . . . , rn, . . . ,

let the decimal representation of these real numbers be
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r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

Then there is a real number r = 0.a1a2a3 . . . given by

ai =

{
1, if dii 6= 1;
2, if dii = 1.
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Note that r ∈ (0,1), but

∀i ∈ Z+(r 6= ri),

since ai 6= dii . This contradicts to our hypothesis that {rn}
lists all the real numbers in (0,1).
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Example
The set S of irrational numbers is uncountable. Otherwise,

R = S ∪Q

would be countable since Q is, contradicting to the fact that
R is uncountable.
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This example shows that irrational numbers are “more” than
rational numbers. Indeed, much more than you think:

From the viewpoint of measure theory, if you pick a random
point in a real line, then

the probability that the point is a rational number is 0%,
and
the probability that the point is a irrational number is
100%!

In other words, we could say:

“Almost all real numbers are irrational.”
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Schröder-Bernstein theorem

It is usually not easy to prove that two sets have the same
cardinality by establishing a bijection between them. The
following theorem provides a more efficient way.

Theorem (Schröder-Bernstein)

If A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.
In other words, if there are injection f : A //B and injection
g : B // A, then there is a bijection between A and B.
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Schröder-Bernstein theorem

Proof.
Without loss of generality, we may suppose that A and B are
disjoint. Otherwise, one just needs to take A′ = A× {0} and
B′ = B × {1}, and prove that the disjoint sets A′ and B′ have
the same cardinality, since obviously |A| = |A′| and
|B| = |B′|.

Now suppose that f : A // B and g : B // A are
injections. For each x0 ∈ X , by applying f we get y0 = f (x0),
and by applying g to y0 we get x1 = g(y0), and by applying f
again to x1 we get y1 = f (x1), and so on. Then we have a
sequence

x0, y0, x1, y1, . . . , xn, yn, . . . ,

where yn = f (xn) and xn+1 = g(yn).
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Schröder-Bernstein theorem

Since both f and g are injections, if an element appears
twice in the above sequence, then the first one must be x0,
i.e., g(yn) = x0 for some n with x0, x1, . . . , xn different from
each other and y0, y1, . . . , yn different from each other.

If there no duplicate elements, consider if there is y−1 ∈ Y
satisfying g(y−1) = x0, which must be unique if exists.
Similarly, we may search for x−1 so that y−1 = f (x−1), and
so on.

By repeating these procedures we have the following four
types of sequences:
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Schröder-Bernstein theorem

Type I: cyclic sequence

x0 y0
f // y0 x1

g // x1 y1
f // y1 . . .

g // . . . xn
g // xn yn

f // yn x0
g //

Type II: two-sided infinite sequence

. . . x−1
g // x−1 y−1

f // y−1 x0
g // x0 y0

f // y0 x1
g // x1 y1

f // y1 . . .
g //

Type III: one-sided infinite sequence (x0 has no
preimage under g)

x0 y0
f // y0 x1

g // x1 y1
f // y1 . . .

g // . . . xn
g // xn yn

f // yn . . .
g //
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Schröder-Bernstein theorem

Type IV: one-sided infinite sequence (y0 has no
preimage under f )

y0 x0
g // x0 y1

f // y1 x1
g // x1 . . .

f // . . . yn
f // yn xn

g // xn . . .
f //

Since f and g are injections, each element of X and Y
appears in exactly one of these sequences. Therefore,
mapping xn in each sequence to the corresponding yn
(n ∈ Z), we obtain a bijection from X to Y .
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Proofs of cardinality

Example

Show that |(0,1)| = |[0,1]|.



MATH 1190

Lili Shen

Summations

Cardinality of
Sets

Proofs of cardinality

Proof.
Let f : (0,1) // [0,1] be

f (x) = x ,

and g : [0,1] // (0,1) be

g(x) =
x + 1

3
.

Then both f and g are injections. Thus |(0,1)| = |[0,1]|.
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Proofs of cardinality

Example

Let A and B be two sets. Show that if |A| = |B|, then
|P(A)| = |P(B)|.
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Proofs of cardinality

Hint.
Since |A| = |B|, there is a bijection f : A // B. Show that
g : P(A) // P(B) given by

∀S ⊆ A, g(S) = f→(S) = {f (a) | a ∈ S},

is a bijection.
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Recommended exercises

Section 2.4: 30, 32, 34, 35, 37.

Section 2.5: 10, 11, 16, 18, 19, 20, 33.
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