MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Introduction to Sets and Logic (MATH 1190)

Instructor: Lili Shen Email: shenlili@yorku.ca

Department of Mathematics and Statistics York University

Dec 4, 2014

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Equivalence Relations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A relation *R* from a set *A* to a set *B* is a subset

 $R \subseteq A \times B$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

a is related to *b* if $(a, b) \in R$, and is also denoted by *aRb*.

In order to distinguish from *n*-ary relations, a subset $R \subseteq A \times B$ is also called a binary relation.

Examples of relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example

Let A be the set of students in a university, and B the set of courses. Then a relation

$$R \subseteq A imes B$$

can be used to represent the enrollments of students at the university. That is to say,

$$(a,b) \in R$$
 or aRb

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

means the student *a* is enrolled in the course *b*.

Relations on a set

MATH 1190 Lili Shen Relations Equivalence Relations Partial Orderings Final Exam Definition A relation on a set A is a relation R from A to A.

In other words, a relation on a set A is a subset of $A \times A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Examples of relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example (Divisibility relation)

Let A be the set $\{1, 2, 3, 4\}$, then the relation

 $R = \{(a, b) \mid a \text{ divides } b\}$

is exactly

 $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$

In general, this relation can be defined on the set \mathbf{Z}^+ of positive integers.

Examples of relations

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example (Congruence relation modulo *m*)

Let *m* be an integer with m > 1. Then

$$R = \{(a, b) \mid a \equiv b \pmod{m}\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

is a relation on the set **Z** of integers.

Reflexive relations

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A relation R on a set A is reflexive if

$$\forall a \in A((a, a) \in R).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Both the divisibility relation on Z^+ and the congruence relation modulo *m* on Z are reflexive.

Symmetric and antisymmetric relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A relation *R* on a set *A* is symmetric if

 $\forall a, b \in A((a, b) \in R \rightarrow (b, a) \in R).$

A relation *R* on a set *A* is antisymmetric if

 $\forall a, b \in A(((a, b) \in R \land (b, a) \in R) \rightarrow (a = b)).$

The divisibility relation on Z^+ is antisymmetric but not symmetric, and the congruence relation modulo *m* on Z is symmetric but not antisymmetric.

Transitive relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A relation R on a set A is transitive if

$$orall a,b,c\in A(((a,b)\in R\wedge (b,c)\in R)
ightarrow (a,c)\in R).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Both the divisibility relation on Z^+ and the congruence relation modulo *m* on Z are transitive.

Outline

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Relation

2 Equivalence Relations

3 Partial Orderings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Equivalence relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A relation *R* on a set *A* is called an equivalence relation if it is reflexive, symmetric, and transitive. Explicitly, for all $a, b, c \in A$,

- (reflexivity) $(a, a) \in R$;
- (symmetry) $(a,b) \in R \rightarrow (b,a) \in R$;
- (transitivity) $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Two elements *a* and *b* are related by an equivalence relation are called equivalent, and we denote it by $a \sim b$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples of relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example (Congruence modulo m)

Let *m* be an integer with m > 1. Show that the relation

$$R = \{(a, b) \mid a \equiv b \pmod{m}\}$$

(ロ) (同) (三) (三) (三) (○) (○)

is an equivalence relation on the set Z of integers.

Examples of relations

MATH 1190

Lili Shen

Proof.

Relations

Equivalence Relations

Partial Orderings

Final Exam

Reflexivity: a ≡ a (mod m) since a - a = 0 is divisible by m.

- Symmetry: if a ≡ b (mod m), then a b = km for some integer k, and consequently b - a = -km. Thus b ≡ a (mod m).
- Transitivity: if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then b = a + km and c = b + lm for some integers k, l. It follows that

$$c = a + km + lm = a + (k + l)m.$$

ヘロマ ヘビマ ヘヨマ

Thus $a \equiv c \pmod{m}$.

Therefore, *R* is an equivalence relation.

Equivalence classes

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A

 $\{s \mid (a,s) \in R\}$

is called the equivalence class of *a*, and is denoted by $[a]_R$. $[a]_R$ can be abbreviated as [a] if there is no confusion.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Equivalence classes

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Remark

- Each *b* ∈ [*a*]_{*R*} is called a representative of this equivalence class.
- Any element in a equivalence class can be used as a representative of this class. In other words, if b ∈ [a]_R and b' ∈ [a]_R, then

$$[a]_R = [b]_R = [b']_R.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Examples of relations

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example (Congruence classes modulo m)

The equivalence classes of the relation congruence modulo m are called congruence classes modulo m. The congruence class of an integer a modulo m is denoted by $[a]_m$, and

$$[a]_m = \{\ldots, a-2m, a-m, a, a+m, a+2m, \ldots\}.$$

For example,

$$\begin{split} & [0]_4 = \{\ldots, -8, -4, 0, 4, 8, \ldots\}, \\ & [1]_4 = \{\ldots, -7, -3, 1, 5, 9, \ldots\}, \\ & [2]_4 = \{\ldots, -6, -2, 2, 6, 10, \ldots\}, \\ & [3]_4 = \{\ldots, -5, -1, 3, 7, 11, \ldots\}. \end{split}$$

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Theorem

Let R be an equivalence relation on a set A. The following statements are equivalent for $a, b \in A$:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(i)
$$(a, b) \in R;$$

(ii) $[a] = [b];$
(iii) $[a] \cap [b] \neq \emptyset.$

MATH 1190

Lili Shen

Proof.

Relations

Equivalence Relations

Partial Orderings

Final Exam

(i) \rightarrow (ii): Suppose $c \in [a]$, then $(c, a) \in R$. Since *R* is an equivalence relation and $(a, b) \in R$, by the transitivity of *R* we have $(c, b) \in R$, and consequently $c \in [b]$. Similarly one can show that $c \in [b]$ implies $c \in [a]$. Therefore [a] = [b].

(ii) \rightarrow (iii): Since [a] = [b], it follows that $a \in [a] \cap [b]$. Hence $[a] \cap [b] \neq \emptyset$.

(iii) \rightarrow (i): Since $[a] \cap [b] \neq \emptyset$, then there exists $c \in [a] \cap [b]$, and consequently $(a, c) \in R$ and $(c, b) \in R$. Therefore $(a, b) \in R$ by the transitivity of *R*.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings From this theorem we know that

$$[a] \neq [b] \longleftrightarrow [a] \cap [b] = \varnothing.$$

Therefore, Given any $a, b \in A$, there are only two cases:

•
$$[a] \cap [b] = \varnothing$$
.

Note also that

$$\bigcup_{a\in A} [a] = A.$$

Therefore, the equivalence classes form a partition of *A*, because they split *A* into disjoint subsets.

Partitions

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union.

In other words, the collection of subsets A_i , where $i \in I$ (I is an index set), forms a partition of S if and only if

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

•
$$A_i \neq \emptyset$$
 for $i \in I$,

•
$$A_i \cap A_j = \emptyset$$
 when $i \neq j$, and

•
$$\bigcup_{i\in I} A_i = S.$$

Examples of partitions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Theorem

Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets A_i , $i \in I$, as its equivalence classes.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Proof.

We have already shown the first part of the theorem.

For the second part, assume that $\{A_i \mid i \in I\}$ is a partition of *S*. Let *R* be the relation on *S* consisting of the pairs (x, y) where *x* and *y* belong to the same subset A_i in the partition. We must show that *R* satisfies the properties of an equivalence relation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

- Reflexivity: For every a ∈ S, (a, a) ∈ R, because a is in the same subset as itself.
- Symmetry: If (a, b) ∈ R, then b and a are in the same subset of the partition, so (b, a) ∈ R.
- Transitivity: If (a, b) ∈ R and (b, c) ∈ R, then a and b are in the same subset of the partition, as are b and c. Since the subsets are disjoint and b belongs to both, the two subsets of the partition must be identical. Therefore, (a, c) ∈ R since a and c belong to the same subset of the partition.

Examples of partitions

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example

The partition in the example of Page 23 gives rise to an equivalence relation on $\{1, 2, 3, 4, 5, 6\}$, which consists of the following ordered pairs:

(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2),(4, 4), (5, 5), (4, 5), (5, 4),(6, 6).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples of partitions

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example

We already know that

$$[0]_4 = \{\dots, -8, -4, 0, 4, 8, \dots\}, \\ [1]_4 = \{\dots, -7, -3, 1, 5, 9, \dots\}, \\ [2]_4 = \{\dots, -6, -2, 2, 6, 10, \dots\}, \\ [3]_4 = \{\dots, -5, -1, 3, 7, 11, \dots\}.$$

These congruence classes modulo 4 form a partition of the set **Z** of integers.

In general, congruence classes module m (m > 1 is an integer) form a partition of **Z**, and split **Z** into m disjoint subsets.

Outline

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Relation

Equivalence Relations

Partial Orderings

Partial ordering

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

A relation R on a set S is called a partial ordering (or partial order) if it is reflexive, antisymmetric, and transitive. Explicitly, for all $a, b, c \in S$,

- (reflexivity) (a, a) ∈ R;
- (antisymmetry) ((a, b) $\in R \land (b, a) \in R$) $\rightarrow (a = b)$;
- (transitivity) $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

A set S equipped with a partial ordering R is called a partially ordered set, or abbreviated as a poset, and is denoted by (S, R).

Usually we write a poset as (S, \leq) , if \leq is a partial ordering on *S*.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Example

- (Z, ≤) is a poset, where ≤ is the usual "less than or equal to" relation.
- (Z,≥) is a poset, where ≥ is the usual "greater than or equal to" relation.
- (Z,=) is a poset, where = is the usual "equal to" relation. Note that = is also an equivalence relation on Z.
- (Z, <) and (Z, >) are not posets due to the lack of reflexivity and antisymmetry.
- (Z, ≠) is not a poset due to the lack of reflexivity, antisymmetry and transitivity.

MATH 1190	
Lili Shen	
Equivalence Relations	
Partial Orderings Final Exam	Example (Divisibility relation)
	Show that $(\mathbf{Z}^+,)$ is a partially ordered set.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Proof.

- Reflexivity: *a* | *a* is trivial.
- Antisymmetry: if $a \mid b$ and $b \mid a$, then a = kb and b = la for some positive integers k and l. Since all these integers are positive, it follows that a = kla and consequently kl = 1, which implies k = l = 1. Hence a = b.
- Transitivity: if a | b and b | c, then b = ka and c = lb for some integers k, l. It follows that c = (kl)a, and thus a | c.

Therefore, $(\mathbf{Z}^+, |)$ is a partially ordered set.

Comparable elements in posets

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Definition

The elements *a* and *b* in a poset (S, \preceq) are called comparable if $a \preceq b$ or $b \preceq a$.

If neither $a \leq b$ nor $b \leq a$, a and b are called incomparable.

If (S, \preceq) is a poset in which every pair of elements are comparable, then \preceq is called a total order or linear order on S, and (S, \preceq) is called a totally ordered set or linearly ordered set or chain.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

- (**Z**⁺, |) is not totally ordered. For example, 3 and 9 are comparable, but 5 and 7 are incomparable.
- (Z,=) is not totally ordered. Indeed, two integers in this poset are comparable if and only if they are equal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• (\mathbf{Z}, \leq) and (\mathbf{Z}, \geq) are both totally ordered.

Recommended exercises

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Relations

Equivalence Relations

3 Pai

Partial Orderings

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Coverage

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

The final exam will cover the contents in our lecture notes. Relevant sections in textbook are listed below (excluding those subsections that are not mentioned in the lecture notes):

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Chapter 1: 1.1, 1.3-1.7;
- Chapter 2: 2.1-2.5;
- Chapter 4: 4.1, 4.3, 4.4;
- Chapter 5: 5.1, 5.2;
- Chapter 9: 9.1, 9.5, 9.6.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Chapter 1:

- Constructing compound propositions using logic operators ¬, ∧, ∨, →, ↔ and (nested) quantifiers ∀, ∃.
- Translating English sentences and mathematical statements into propositional or predicate logic, and vice versa.
- Understanding logical equivalences.
- The methods of direct proofs, proofs by contraposition and proofs by contradiction.
- The method of proving "if and only if" statements.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Chapter 2:

- Understanding sets, (proper) subsets, empty set, power sets, Cartesian products of two sets.
- Set operations (intersection, union, complement, difference) and their relations to logic operators.
- The methods of proving one set is a (proper) subset of another set and two sets are equal.
- Understanding basic notions of functions, and some elementary real-valued functions (i.e., linear functions, quadratic functions and exponential functions).
- The methods of showing that a function is/is not injective/surjective/bijective.
- Compositions and inverses of functions.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Chapter 2 (continued):

- Solving some simple recurrence relations with given initial conditions.
- Calculating the sums of terms of arithmetic progressions and geometric progressions.
- Calculating some simple double summations.
- Understanding the difference between finite sets and infinite sets.
- Examples of countable sets and uncountable sets.
- The methods of showing that two sets have the same cardinality.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Chapter 4:

- Understanding the division algorithm and congruence relations.
- Finding prime factorizations of integers.
- Finding the greatest common divisor and least common multiple of integers.
- Using Euclidean Algorithm to express the greatest common divisor of integers as a linear combination.
- Solving linear congruences by finding inverses.
- Using Chinese remainder theorem or back substitution to solve a system of congruences.

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Chapter 5:

- Proofs by mathematical induction.
- Proofs by strong induction.

Chapter 9:

- Understanding the connection between equivalence relations, congruence classes and partition, and related examples.
- Understanding partial orderings and comparability, and related examples.

Instructions

MATH 1190

Lili Shen

Relations

- Equivalence Relations
- Partial Orderings
- Final Exam

- The final exam will be held on Saturday, Dec 13, 7-10 pm at TM East.
- Our final exam is different (in time, location, exam questions and coverage) from Section A. Please make sure that you are enrolled in Section B and take part in the right exam.
- Final exam is a must for the final grading of the course. Missing the final exam without a formal deferred standing due to force majeure will be considered as giving up the credits.
- Please contact me BEFORE the final exam if you think there is anything wrong with your quiz marks or homework records.
- Additional office hours next week: 9-11 am from Monday to Friday.

Instructions

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

- The final exam is half-open-book. Everyone is allowed to take part in the exam with one A4 sheet of paper, and anything can be written or printed on both sides of this paper. No other aids are permitted, including (but not limited to) a second sheet of paper, textbooks, lecture notes, calculators and electronic devices.
- Reviewing tips: focus on lecture notes and recommended exercises.
- The difficulty of the final exam will be similar to the quizzes. However, it is not wise to guess the questions of final exam from the quizzes. In fact, the required knowledge and methods that are not covered by the quizzes will probably appear in the final exam.

THE END

MATH 1190

Lili Shen

Relations

Equivalence Relations

Partial Orderings

Final Exam

Thank you for enduring the pain of math for the whole term.

Hope everyone has this feeling after the final exam:

