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Abstract

Based on Garner’s discovery that topological categories are total categories enriched in a quantaloid, this
paper presents a series of results related to initial and final density in categorical topology via (co)density in
quantaloid-enriched categories, focusing on (co-)Sierpiński objects, Galois correspondences and their fixed
points.
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1. Introduction

Garner’s discovery [4] that topological categories are total categories enriched in a quantaloid has brought
new light into the field of categorical topology [1, 15] initiated by Brümmer [2], Wyler [26, 27] and Herrlich
[5]. As depicted by Garner [4], concrete categories over a base category B may be interpreted as “preorders
relative to B”, and topological categories over B then become “complete preorders relative to B”. To
formalize this idea, the theory of enriched categories [3, 10] and the notion of totality [23] are employed in [4],
and it is shown that concrete categories over B may be seen as categories enriched in the free quantaloid [18]
QB induced by B, while the topologicity of a concrete category over B corresponds precisely to the totality
of categories enriched in QB (see [19, 24, 25] for the theory of quantaloid-enriched categories). Garner’s
discovery, as well as being an elegant result itself, unlocks the powerful arsenal of enriched category theory
in the study of categorical topology. Following this way, the paper [21] of Shen and Tholen expands upon
Garner’s result and interprets several key results of categorical topology from the viewpoint of quantaloid-
enriched category theory.

The purpose of this paper is to continue the exploration on categorical topology through the quantaloidal
approach, and we focus on the notion of density in both contexts. Recall that:

• a full subcategory D of a concrete category E over B is initially dense [1] if every E-object is the domain
of some initial source with codomains in D, and final density is the dual concept;

• a functor F : D // E enriched in a quantaloid Q is dense [22, 4, 21] if every E-object is the colimit of
F weighted by a presheaf on D, and codensity is the dual concept.

As implicitly suggested in [4, 21], initial density and final density in concrete categories amount to codensity
and density in quantaloid-enriched categories, respectively. Based on the fundamental 2-equivalence between
concrete categories over B and categories enriched in the quantaloid QB elaborated in Section 2, we define
sources and sinks on a general quantaloid-enriched category in Section 3, which are actually the discrete
version of (co)presheaves introduced by Stubbe [24]. As revealed in Section 4, for a concrete category E over
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B, sources (resp. sinks) on the corresponding QB-category E just disguise E-structured sources (resp. sinks)
in B. If we slightly generalize the notions of initial and final density to concrete functors (Definition 4.4),
then it can be shown that a concrete functor F : D // E over B is initially (resp. finally) dense if, and only
if, the corresponding QB-functor F : D // E is codense (resp. dense); see Proposition 4.7.

Connecting the density in categorical topology and enriched category theory allows us to reconcile several
related notions and results in the two lines of research. It is well known that the Sierpiński space, as a one-
object full subcategory of the category Top of topological spaces and continuous maps, is initially dense.
In general, a Sierpiński object [16] in a concrete category E over B is an E-object that is initially dense in E
as a one-object full subcategory. With Proposition 4.7 at hand, (co-)Sierpiński objects may be defined for
categories enriched in any quantaloid (Definition 5.1). We characterize (co-)Sierpiński objects in quantaloid-
enriched categories via (co)tensors (Proposition 5.3) which, conversely, corresponds to an obvious description
of (co-)Sierpiński objects in concrete categories (Proposition 5.7).

Galois correspondences [1] between concrete categories are the concrete version of adjoint functors, which
correspond precisely to adjoint functors enriched in a quantaloid. For any quantaloid Q, it can be shown
that left and right adjoint Q-functors are completely determined by their values on dense and codense Q-
subcategories of their domains, respectively (Proposition 6.1). In the context of concrete categories, it in
particular means that the number of Galois correspondences between certain concrete categories is limited by
their actions on a (co-)Sierpiński object, whenever it exists. As applications, we show that there are exactly
two Galois correspondences on Top (Example 6.4) and three Galois correspondences on the category Ord
of (pre)ordered sets and monotone maps (Example 6.5).

Finally, based on our recent paper [11], in Section 7 we develop representation theorems for fixed points
of Galois correspondences between topological categories through initially dense and finally dense concrete
functors (Theorems 7.5 and 7.6), and illustrate them with Examples 7.7, 7.8 and 7.9. As an application, the
characterization of the MacNeille completion of a concrete category (cf. [6, 1, 4]) is reproduced as a direct
consequence of our general representation theorems (Corollary 7.12).

For the size issues encountered in this paper, we choose to follow the treatment of [21]; that is, we employ
no specific strict set-theoretical regime, distinguishing only between sets (“small”) and classes (“possibly
large”). If a category turns out to be illegitimately large, we add the prefix “meta” to indicate that it has
to be placed in a higher universe.

2. Concrete categories as quantaloid-enriched categories

A quantaloid [19] is a category enriched in the monoidal closed category Sup [9] of complete lattices and
join-preserving functions. Explicitly, a quantaloid Q is a (possibly large) 2-category with its 2-cells given by
order, such that each hom-set Q(S, T ) is a complete lattice and the composition of arrows preserves joins in
each variable. The induced right adjoints of the composition functions

(− ◦ u) a (− ↙ u) : Q(S,U) //Q(T,U),

(v ◦ −) a (v ↘ −) : Q(S,U) //Q(S, T )

satisfy
v ◦ u ≤ w ⇐⇒ v ≤ w ↙ u ⇐⇒ u ≤ v ↘ w (2.i)

for all Q-arrows u : S // T , v : T // U , w : S // U , where ↙ and ↘ are called left and right implications
of Q, respectively.

Given a quantaloid Q, a Q-category (i.e., a category enriched in Q) E is given by

• a class E0 of objects,

• a function |-| : E0 //Q0(= obQ) sending each X ∈ E0 to its extent |X| ∈ Q0,

• a family E(X,Y ) ∈ Q(|X|, |Y |) (X,Y ∈ E0) of morphisms satisfying

1|X| ≤ E(X,X) and E(Y,Z) ◦ E(X,Y ) ≤ E(X,Z)

for all X,Y, Z ∈ E0.
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It is well known that every (locally small) category B induces a free quantaloid [18] QB given by

• obQB = B0(= obB),

• QB(S, T ) = {f | f ⊆ B(S, T )} for all S, T ∈ B0,

• g ◦ f = {g ◦ f | f ∈ f , g ∈ g} and 1S = {1S} for all f ∈ QB(S, T ), g ∈ QB(T,U).

Considering B as a base category, QB-categories are actually concrete categories over B. Explicitly, since a
concrete category E over B [1] is given by a faithful functor

|-| : E // B,

if we identify E(X,Y ) with |E(X,Y )| ⊆ B(|X|, |Y |), then E is fully described by

• a class E0 of objects,

• a function |-| : E0 // B0 sending each X ∈ E0 to its extent |X| ∈ B0,

• a family E(X,Y ) ⊆ B(|X|, |Y |) (X,Y ∈ E0) of morphisms satisfying

1|X| ∈ E(X,X) and E(Y,Z) ◦ E(X,Y ) ⊆ E(X,Z)

for all X,Y, Z ∈ E0.

We refer to B-arrows as maps and E-arrows as morphisms, respectively; hence, a map f ∈ B(|X|, |Y |) is a
morphism (or more precisely, an E-morphism) if f ∈ E(X,Y ).

Given a quantaloid Q, every Q-category E admits an underlying (pre)order on E0 given by

X ≤ Y ⇐⇒ |X| = |Y | and 1|X| ≤ E(X,Y ). (2.ii)

We write X ∼= Y if X ≤ Y and Y ≤ X, and E is called separated if X = Y whenever X ∼= Y in E .
A Q-functor F : D // E between Q-categories is a function F : D0

// E0 such that

|X| = |FX| and D(X,Y ) ≤ E(FX,FY )

for all X,Y ∈ D0. With the pointwise order of Q-functors given by

F ≤ G : D // E ⇐⇒ ∀X ∈ D0 : FX ≤ GX ⇐⇒ ∀X ∈ D0 : 1|X| ≤ E(FX,GX), (2.iii)

we obtain a 2-(meta)category
Q-CAT.

With Q = QB for a base category B, QB-functors precisely characterize concrete functors F : D // E
between concrete categories over B; that is, functions F : D0

// E0 with

|X| = |FX| and D(X,Y ) ⊆ E(FX,FY )

for all X,Y ∈ D0. In fact, let
CAT ⇓c B

denote the 2-(meta)category of concrete categories and concrete functors over B whose 2-cells are given by
trading 1|X| ≤ E(FX,GX) with 1|X| ∈ E(FX,GX) in (2.iii), we obtain a 2-equivalence:

Proposition 2.1. [4] The 2-(meta)categories CAT ⇓c B and QB-CAT are 2-equivalent.

In order to avoid confusion, from now on we write E for the corresponding QB-category of each concrete
category E over B, and write

F : D // E

for the corresponding QB-functor of each concrete functor F : D // E .
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3. Sources and sinks on quantaloid-enriched categories

From every quantaloid Q we may formulate a (meta)quantaloid1

Q-REL

consisting of the following data:

• objects of Q-REL are classes over Q0, i.e., classes E equipped with a function |-| : E //Q0;

• an arrow Φ : D //7 E in Q-REL is a Q-relation, i.e., a family of Q-arrows

Φ(X,Y ) : |X| // |Y | (X ∈ D, Y ∈ E);

• compositions and implications in Q-REL are given by

Ψ ◦ Φ : C //7 E, (Ψ ◦ Φ)(X,Z) =
∨
Y ∈D

Ψ(Y,Z) ◦ Φ(X,Y ),

Ξ↙ Φ : D //7 E, (Ξ↙ Φ)(Y,Z) =
∧
X∈C

Ξ(X,Z)↙ Φ(X,Y ),

Ψ↘ Ξ : C //7 D, (Ψ↘ Ξ)(X,Y ) =
∧
Z∈E

Ψ(Y, Z)↘ Ξ(X,Z)

for all Q-relations Φ : C //7 D, Ψ : D //7 E, Ξ : C //7 E;

• each Q-REL(D,E) is equipped with the order inherited from Q, i.e.,

Φ ≤ Ψ : D //7 E ⇐⇒ ∀X ∈ D, ∀Y ∈ E : Φ(X,Y ) ≤ Ψ(X,Y );

• the identity Q-relation on E is given by

idE : E //7 E, idE(X,Y ) =

{
1|X| if X = Y,

⊥ else.

Using the language of Q-relations, a Q-category E is actually given by a Q-relation E : E0 //7 E0 with

idE0 ≤ E and E ◦ E ≤ E . (3.i)

Given Q-categories D, E , a Q-relation Φ : D0
//7 E0 becomes a Q-distributor Φ : D //◦ E if

E ◦ Φ ◦ D ≤ Φ. (3.ii)

Q-categories and Q-distributors constitute a (meta)quantaloid

Q-DIST,

in which the compositions and implications are calculated in the same way as in Q-REL, and the identity
Q-distributor on E is given by its hom

E : E //◦ E .
Since each class E over Q0 may be viewed as a discrete Q-category with the hom given by idE, Q-REL is
embedded into Q-DIST as a full subquantaloid.

With (3.i) and (3.ii) it is easy to observe the following fact:

1As indicated at the end of the introduction, a (meta)quantaloid refers to a quantaloid that lives in a higher universe. For
a (meta)quantaloid Q, each Q(S, T ) (S, T ∈ Q0) is an ordered (possibly large) class in which the supremum (or equivalently,
infimum) of any subclass exists.
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Proposition 3.1. Let D, E be Q-categories. For any Q-relation Φ : D0
//7 E0,

E ◦ Φ ◦ D : D //◦ E

is a Q-distributor.

For each object T ∈ Q0, we denote by {T} the one-object Q-category whose only object has extent T
and hom 1T .

Definition 3.2. A sink (resp. source) of extent T on a Q-category E is a Q-relation

σ : E0 //7 {T} (resp. τ : {T} //7 E0).

The supremum (resp. infimum) of σ (resp. τ), when it exists, is an object supσ ∈ E0 (resp. inf τ ∈ E0) of
extent T , such that

E(supσ,−) = E ↙ σ (resp. E(−, inf τ) = τ ↘ E). (3.iii)

A sink σ (resp. source τ) on a Q-category E is called a presheaf (resp. copresheaf ) on E if it is a
Q-distributor. It follows from Proposition 3.1 that every sink σ : E0 //7 {T} (resp. source τ : {T} //7 E0)
on E generates a presheaf (resp. copresheaf)

σ ◦ E : E //◦ {T} (resp. E ◦ τ : {T} //◦ E).

Suprema (resp. Infima) of sinks (resp. sources) are certainly compatible with suprema (resp. infima) of
presheaves (resp. copresheaves) defined in [22]:

Proposition 3.3. For any sink σ (resp. source τ) on a Q-category E,

supσ = sup(σ ◦ E) (resp. inf τ = inf(E ◦ τ)).

Proof. Since

E ↙ σ = (E ↙ E)↙ σ = E ↙ (σ ◦ E) and τ ↘ E = τ ↘ (E ↘ E) = (E ◦ τ)↘ E ,

the conclusion follows soon from (3.iii).

Given a Q-category E , it is well known [24] that every presheaf on E has a supremum if, and only if,
every copresheaf on E has an infimum. Following the terminology of [23, 4], we say that:

Definition 3.4. A Q-category E is total if every sink on E has a supremum, or equivalently, if every source
on E has an infimum.

Every Q-functor F : D // E gives rise to a pair of Q-distributors

F\ : D //◦ E , F\(X,Y ) = E(FX, Y ) and F \ : E //◦ D, F \(Y,X) = E(Y, FX),

called the graph and cograph of F , respectively. It is easy to see that

F ≤ G : D // E ⇐⇒ G\ ≤ F\ : D //◦ E ⇐⇒ F \ ≤ G\ : E //◦ D, (3.iv)

and thus there are 2-functors

(−)\ : (Q-CAT)co //Q-DIST and (−)\ : (Q-CAT)op //Q-DIST,

which are both neutral on objects. Here “co” refers to the dualization of 2-cells. Since

D ≤ F \ ◦ F\ and F\ ◦ F \ ≤ E ,

we have an adjunction F\ a F \ in Q-DIST.
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Definition 3.5. The colimit (resp. limit) of a Q-functor F : D // E weighted by a sink σ : D0
//7 {T}

(resp. source τ : {T} //7 D0) on D, when it exists, is an object colimσ F ∈ E0 (resp. limτ F ∈ E0) of extent
T , such that

E(colimσF,−) = F\ ↙ σ (resp. E(−, limτF ) = τ ↘ F \). (3.v)

Analogously to Proposition 3.3, we may prove that Definition 3.5 extends the notion of weighted (co)limit
in [24]:

Proposition 3.6. For any Q-functor F : D // E and any sink σ (resp. source τ) on D,

colimσF = colimσ◦DF (resp. limτF = limD◦τF ).

Proof. Since

F\ ↙ σ = (F\ ↙ D)↙ σ = F\ ↙ (σ ◦ D) and τ ↘ F \ = τ ↘ (D ↘ F \) = (D ◦ τ)↘ F \,

the conclusion follows soon from (3.v).

It is not difficult to see that weighted colimits (resp. limits) and suprema (resp. infima) can be represented
by each other:

Proposition 3.7. For each sink σ (resp. source τ) on E,

supσ = colimσ1E (resp. inf τ = limτ1E). (3.vi)

Conversely, for each Q-functor F : D // E and sink σ (resp. source τ) on D,

colimσF = sup(σ ◦ F \) (resp. limτF = inf(F\ ◦ τ)). (3.vii)

4. Density in concrete categories and quantaloid-enriched categories

Given a concrete category E over B, an E-structured source [1] τ is given by a B-object T and a (possibly
large) family

(gi : T // |Xi|)i∈I (4.i)

of maps in B, where Xi ∈ E0 (i ∈ I). A lifting of τ is an E-object Y with |Y | = T such that every gi is an
E-morphism, and the lifting is initial if

(gi : Y //Xi)i∈I

is an initial source in E ; that is, for any Z ∈ E0, a map f : |Z| // |Y | becomes an E-morphism as soon as
all maps gi ◦ f : |Z| // |Xi| are E-morphisms:

Y Xi
gi //Y

Z

OO

f

Xi

Z

77

gi◦f

|Y | |Xi|
gi //|Y |

|Z|

OO

f

|Xi|

|Z|

77

gi◦f
� |-|

//

Note that an E-structured source τ given by (4.i) may be regrouped into an E0-indexed family, which we
denote by τ , with

τ(X) := {gi : T // |Xi| | i ∈ I, Xi = X} ⊆ B(T, |X|) (X ∈ E0), (4.ii)

where τ(X) is allowed to be empty if no Xi (i ∈ I) has extent X. Thus, τ is precisely a QB-relation

τ : {T} //7 E0;
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that is, a source on the QB-category E . From (2.i) it is not difficult to deduce that

h↙ f = {g ∈ B(T,U) | ∀f ∈ f : g ◦ f ∈ h} and g↘ h = {f ∈ B(S, T ) | ∀g ∈ g : g ◦ f ∈ h}. (4.iii)

for all f ⊆ B(S, T ), g ⊆ B(T,U), h ⊆ B(S,U). Hence, the initial lifting of τ , when it exists, is an object
Y ∈ E0 satisfying

E(Z, Y ) = {f ∈ B(|Z|, |Y |) | ∀i ∈ I : gi ◦ f ∈ E(Z,Xi)}
= {f ∈ B(|Z|, |Y |) | ∀X ∈ E0, ∀g ∈ τ(X) : g ◦ f ∈ E(Z,X)}

=
⋂
X∈E0

{f ∈ B(|Z|, |Y |) | ∀g ∈ τ(X) : g ◦ f ∈ E(Z,X)}

=
⋂
X∈E0

τ(X)↘ E(Z,X)

= τ ↘ E(Z,−)

for all Z ∈ E0; that is,
E(−, Y ) = τ ↘ E . (4.iv)

Comparing with Equation (3.iii) in Definition 3.2 we have actually proved:

Proposition 4.1. Let E be a concrete category over B. The initial lifting of an E-structured source τ , when
it exists, is precisely the infimum of the source

τ : {T} //7 E0

on the QB-category E.

Dually, every E-structured sink σ given by (fi : |Xi| // T )i∈I (Xi ∈ E0) corresponds to a sink

σ : E0
//7 {T}

with
σ(X) := {fi : |Xi| // T | i ∈ I, Xi = X} ⊆ B(|X|, T ) (X ∈ E0) (4.v)

on the QB-category E . A lifting of σ is an E-object Y with |Y | = T such that every fi is an E-morphism,
and the lifting is final if

(fi : Xi
// Y )i∈I

is a final sink in E ; that is, for any Z ∈ E0, a map g : |Y | // |Z| becomes an E-morphism as soon as all
maps g ◦ fi are E-morphisms. The dual version of Proposition 4.1 reads as follows:

Proposition 4.2. Let E be a concrete category over B. The final lifting of an E-structured sink σ, when it
exists, is precisely the supremum of the sink

σ : E0
//7 {T}

on the QB-category E.

Recall that a concrete category E is topological [1] over B if every E-structured source admits an initial
lifting, or equivalently, if every E-structured sink admits a final lifting. From Definition 3.4, Propositions
4.1 and 4.2 we have:

Proposition 4.3. [4] A concrete category E over B is topological if, and only if, the QB-category E is total.

For a concrete category E over B, a full subcategory D of E is initially dense (resp. finally dense) [1]
if every Y ∈ E0 is the domain (resp. codomain) of some initial source (gi : Y // Xi)i∈I (resp. final sink
(fi : Xi

// Y )i∈I) in E with Xi ∈ D0 for all i ∈ I. This notion may be slightly generated to the following:
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Definition 4.4. A concrete functor F : D //E over B is initially dense (resp. finally dense) if every Y ∈ E0
is the domain (resp. codomain) of some initial source (gi : Y //FXi)i∈I (resp. final sink (fi : FXi

//Y )i∈I)
in E with Xi ∈ D0 for all i ∈ I.

Recall that for any quantaloid Q, a Q-functor F : D // E is dense (resp. codense) [22, 4, 21, 11] if every
object Y ∈ E0 is the colimit (resp. limit) of F weighted by some presheaf (resp. copresheaf) τ on D. In
particular, a Q-subcategory D of E is dense (resp. codense) if the inclusion Q-functor D �

�
// E is dense

(resp. codense).
By Proposition 3.3, it is equivalent to define the (co)density of Q-functors as follows:

Definition 4.5. Let Q be a quantaloid. A Q-functor F : D // E is dense (resp. codense) if every object
Y ∈ E0 is the colimit (resp. limit) of F weighted by some sink (resp. source) τ on D.

In order to connect the notions of density in concrete categories and quantaloid-enriched categories, we
first prove a lemma:

Lemma 4.6. Let F : D // E be a concrete functor over B. For each E-structured source λ (resp. sink µ)

(gi : T // |FXi|)i∈I (resp. (fi : |FXi| // T )i∈I),

where T ∈ B0, Xi ∈ D0 (i ∈ I), let τ (resp. σ) be the D-structured source (resp. sink)

(gi : T // |Xi|)i∈I (resp. (fi : |Xi| // T )i∈I).

Then
F \ ◦ τ = E ◦ λ (resp. σ ◦ F \ = µ ◦ E).

Proof. Note that |X| = |FX| for all X ∈ D0, and thus τ(Xi) = λ(FXi) for all i ∈ I. Moreover, from the
definition of τ and λ we know that τ(X) = ∅ whenever X 6= Xi for any i ∈ I, and λ(Y ) = ∅ whenever
Y 6= FXi for any i ∈ I. It follows that

F \(−, Y ) ◦ τ =
⋃

X∈D0

F \(X,Y ) ◦ τ(X) =
⋃
i∈I

F \(Xi, Y ) ◦ τ(Xi)

=
⋃
i∈I
E(FXi, Y ) ◦ λ(FXi) =

⋃
Z∈E0

E(Z, Y ) ◦ λ(Z) = E(−, Y ) ◦ λ

for all Y ∈ E0, as desired.

Proposition 4.7. A concrete functor F : D // E over B is initially dense (resp. finally dense) if, and only
if, the QB-functor F : D // E is codense (resp. dense).

Proof. If F : D // E is initially dense, then for each Y ∈ E0, we have an initial source

(gi : Y // FXi)i∈I

in E with Xi ∈ D0 for all i ∈ I; that is, Y is the initial lifting of the E-structured source λ given by

(gi : |Y | // |FXi|)i∈I .

Let τ be the D-structured source
(gi : |Y | // |Xi|)i∈I .

Then
Y = inf λ = inf(E ◦ λ) = inf(F \ ◦ τ) = limτF , (4.vi)

where the four equalities follow from Propositions 4.1, 3.3, Lemma 4.6 and Proposition 3.7, respectively.
Thus F : D // E is codense.
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Conversely, if F : D // E is codense, then every Y ∈ E0 satisfies Y = limτ F for some source τ on the
QB-category D, which clearly corresponds to the D-structured source τ given by

{g : |Y | // |X| | X ∈ D0, g ∈ τ(X)}.

Let λ be the E-structured source λ given by

{g : |Y | // |FX| | X ∈ D0, g ∈ τ(X)}.

Then we may deduce analogously to (4.vi) that

Y = limτF = inf(F \ ◦ τ) = inf(E ◦ λ) = inf λ.

Thus, by Proposition 4.1, Y is the initial lifting of the E-structured source λ; that is,

{g : Y // FX | X ∈ D0, g ∈ τ(X)}

is an initial source in E , which completes the proof.

5. (Co-)Sierpiński objects of concrete categories via (co)tensors

Recall that in a concrete category E over B, a Sierpiński object [16] is an object X ∈ E0 such that {X},
as a one-object full subcategory of E , is initially dense in E . By Proposition 4.7, the notion of Sierpiński
object may be defined in quantaloid-enriched categories as follows:

Definition 5.1. Let Q be a quantaloid. In a Q-category E , an object X ∈ E0 is Sierpiński (resp. co-
Sierpiński) if {X}, as a one-object Q-subcategory of E , is codense (resp. dense) in E .

In order to characterize (co-)Sierpiński objects in Q-categories, we need the following

Lemma 5.2. A Q-functor F : D // E is dense (resp. codense) if, and only if, F\ ↙ F\ = D (resp.
F \ ↘ F \ = E).

Proof. If F is codense, for each Y ∈ E0 we may find a source τ on D with Y = limτ F . Then

E(−, Y ) ≤ F \(Y,−)↘ F \

≤ E(Y, Y ) ◦ (F \(Y,−)↘ F \)

= (τ ↘ F \(Y,−)) ◦ (F \(Y,−)↘ F \) (Equation (3.v))

≤ τ ↘ F \

= E(−, Y ), (Equation (3.v))

and consequently E(−, Y ) = F \(Y,−)↘ F \ = (F \ ↘ F \)(−, Y ).
Conversely, if F \ ↘ F \ = E , then for each Y ∈ E0 we have

E(−, Y ) = F \(Y,−)↘ F \,

which means precisely that Y = limF \(Y,−) F .

Let E be a Q-category. Recall that the tensor (resp. cotensor) [25] of a Q-arrow f : |X| // T (resp.
g : T // |X|) and X ∈ E0, denoted by f ⊗X (resp. g�X), is an E-object of extent T such that

E(f ⊗X,−) = E(X,−)↙ f (resp. E(−, g�X) = g ↘ E(−, X)). (5.i)

Proposition 5.3. Let E be a Q-category. An object X ∈ E0 Sierpiński (resp. co-Sierpiński) if, and only if,

Y = E(Y,X)�X (resp. Y = E(X,Y )⊗X)

for all Y ∈ E0.
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Proof. By Lemma 5.2, {X} being codense in E precisely translates to

E = E(−, X)↘ E(−, X); (5.ii)

that is,
E(−, Y ) = E(Y,X)↘ E(−, X)

for all Y ∈ E0, which means that Y = E(Y,X)�X by (5.i).

Example 5.4. Let
Q = (Q,&, k)

be a (unital) quantale [17], i.e., a one-object quantaloid, where & is the composition of the unique hom-set
on Q with k being the unit. Then there are two Q-categories with Q itself as the underlying set, which we
denote by Q and Q†, respectively, with

Q(p, q) = q ↙ p and Q†(p, q) = q ↘ p

for all p, q ∈ Q. We assert that k is a Sierpiński object of Q† and a co-Sierpiński object of Q.
In fact, for any p, q ∈ Q, the tensor (resp. cotensor) of p and q in Q (resp. Q†) is given by

p⊗Q q = p & q (resp. p�Q†q = q & p).

It follows that

q = (q ↙ k) & k = Q(k, q)⊗Q k (resp. q = k & (k ↘ q) = Q†(q, k)�Q†k)

for all q ∈ Q. Hence, k is a co-Sierpiński object of Q (resp. a Sierpiński object of Q†) by Proposition 5.3.

Example 5.5. For every quantaloid Q, there is a Q-category Q> with Q0 as the class of objects and

Q>(S, T ) = >S,T : S // T

for all S, T ∈ Q0, where >S,T refers to the top element of the complete lattice Q(S, T ). In the Q-category
Q>, it follows immediately from Equation (5.ii) (and its dual) that every object X ∈ Q0 is both Sierpiński
and co-Sierpiński.

For a concrete category E over B, the tensor (resp. cotensor) of a QB-arrow f ⊆ B(|X|, T ) (resp.
g ⊆ B(T, |X|)) and X ∈ E0, when it exists, must satisfy

E(f ⊗X,Z) = E(X,Z)↙ f (resp. E(Z,g�X) = g↘ E(Z,X))

for all Z ∈ E0; that is, a map g : |f ⊗X| // |Z| (resp. f : |Z| // |g�X|) becomes an E-morphism as soon
as all maps g ◦ f : |X| // |Z| (f ∈ f) (resp. g ◦ f : |Z| // |X| (g ∈ g)) are E-morphisms. In other words:

Proposition 5.6. Let E be a concrete category over B. The tensor (resp. cotensor) of a QB-arrow f ⊆
B(|X|, T ) (resp. g ⊆ B(T, |X|)) and X ∈ E0, when it exists, is precisely the final (resp. initial) lifting of the
structured sink (resp. source) f ⊆ B(|X|, T ) (resp. g ⊆ B(T, |X|)).

Translating Proposition 5.3 to concrete categories via Proposition 5.6 produces the following:

Proposition 5.7. Let E be a concrete category over B. An object X ∈ E0 is Sierpiński (resp. co-Sierpiński)
if, and only if, E(Y,X) (resp. E(X,Y )) is an initial source (resp. a final sink) in E for all Y ∈ E0.

Example 5.8. If Q is a quantale, then the category Q-Cat of (small) Q-categories and Q-functors is
topological over Set (see [8, Theorem III.3.1.3]), and Q is a Sierpiński object in Q-Cat. Indeed, for any
Q-category E , the initiality of the source Q-Cat(E ,Q) in Q-Cat is easily verified (cf. [8, Exercise III.1.H]).
In particular:
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(1) If 2 = {0 ≤ 1} is the two-element Boolean algebra, then Ord := 2-Cat is the topological category
of (pre)ordered sets and monotone maps over Set. It follows that 2 is a Sierpiński object of Ord,
and moreover, 2 is also a co-Sierpiński object of Ord. Indeed, for every preordered set X, the sink
Ord(2, X) is final in Ord.

(2) If [0,∞] is the Lawvere quantale [12], then Met := [0,∞]-Cat is the topological category of (general-
ized) metric spaces and non-expansive maps over Set. It follows that [0,∞] itself, as a metric space,
is a Sierpiński object of Met.

Example 5.9. Let Eqv denote the full subcategory of Ord whose objects are sets equipped with an
equivalence relation. Then Eqv has a Sierpiński object given by the set {0, 1} equipped with the discrete
order, i.e., the relation {(0, 0), (1, 1)}, and a co-Sierpiński object given by the set {0, 1} equipped with the
indiscrete order, i.e., the relation {(0, 0), (1, 1), (0, 1), (1, 0)}.

Example 5.10. If B is considered as a concrete category over itself, then every object X ∈ B0 is both
Sierpiński and co-Sierpiński. In fact, the corresponding QB-category B is precisely the QB-category Q>B
given in Example 5.5.

Example 5.11. The Sierpiński space S, whose underlying set is {0, 1} and whose open sets are {∅, {1}, {0, 1}},
is clearly a Sierpiński object of the category Top of topological spaces and continuous maps.

Example 5.12. Approach spaces [13, 14] may be considered as topological spaces valued in the Lawvere
quantale [0,∞] (cf. [8, Section III.2.4]). In the topological category App of approach spaces and contractions
over Set, [0,∞] is itself an approach space and serves as a Sierpiński object of App (see [14, Theorem 1.3.19]).

Example 5.13. The category Vect of real vector spaces and linear transformations is concrete (but not
topological) over Set. The real plane R2 is a co-Sierpiński object of Vect since, for any real vector space
X, the sink Vect(R2, X) is final in Vect.

Example 5.14. [7] Let Rlt denote the topological category over Set whose objects are sets equipped with
an arbitrary relation and whose morphisms are relation-preserving maps. Then Rlt has a Sierpiński object
given by the set {0, 1} equipped with the relation {(0, 0), (0, 1), (1, 0)}, and a co-Sierpiński object given by
the set {0, 1} equipped with the relation {(0, 1)}.

6. Galois correspondences

A Galois correspondence [1] between concrete categories is precisely an internal adjunction in CAT ⇓c B.
In other words, concrete functors L : D // E and R : E //D form a Galois correspondence (L,R) between
D and E , if

1D ≤ RL and LR ≤ 1E ; (6.i)

or equivalently, if
E(L−,−) = D(−, R−). (6.ii)

Galois correspondences between concrete categories clearly amount to adjoint functors between quantaloid-
enriched categories. In general, for any quantaloid Q, Q-functors L : D // E and R : E // D form an
adjunction in Q-CAT, denoted by L a R, if (6.i) or (6.ii) holds. In this case, L is called the left adjoint of
R, and R is called the right adjoint of L.

The following proposition claims that a left (resp. right) adjoint Q-functor is completely determined by
its action on a dense (resp. codense) Q-subcategory of its domain:

Proposition 6.1. Let F : C // D be a dense (resp. codense) Q-functor. If L,L′ : D // E (resp. R,R′ :
D // E) are left (resp. right) adjoint Q-functors satisfying

LF ∼= L′F (resp. RF ∼= R′F ),

then L ∼= L′ (resp. R ∼= R′). In particular, if D has a co-Sierpiński (resp. Sierpiński) object X and
LX ∼= L′X (resp. RX ∼= R′X), then L ∼= L′ (resp. R ∼= R′).
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Proof. For every X ∈ D0, by the density of F we may find a sink σ on C with X = colimσ F . Suppose that
L a R : E //D in Q-CAT, then

E(LX,−) = D(X,R−) = F\(−, R−)↙ σ = D(F−, R−)↙ σ = E(LF−,−)↙ σ = (LF )\ ↙ σ;

that is, LX = colimσ LF . Similarly we may deduce that L′X = colimσ L
′F . Thus L ∼= L′ follows from

LF ∼= L′F .

Corollary 6.2. Let F : C // D be a finally dense (resp. an initially dense) concrete functor over B. If
(L,R) and (L′, R′) are both Galois correspondences between concrete categories D and E over B satisfying

LF ∼= L′F (resp. RF ∼= R′F ),

then L ∼= L′ (resp. R ∼= R′). In particular, if D has a co-Sierpiński (resp. Sierpiński) object X and
LX ∼= L′X (resp. RX ∼= R′X), then L ∼= L′ (resp. R ∼= R′).

Remark 6.3. In Corollary 6.2 the symbol “∼=” is used in the context of concrete categories over B. Through-
out this paper, we make the convention that “X ∼= Y ” in a concrete category E over B always refers to
X ≤ Y and Y ≤ X in the underlying order of the QB-category E (see (2.ii)), which is stronger than the
isomorphism of objects in an ordinary category.

As applications of Corollary 6.2, we claim that there are exactly two Galois correspondences (up to
homeomorphism) on Top and three Galois correspondences (up to isomorphism) on Ord:

Example 6.4. If (L,R) is a Galois correspondence on Top, then R is completely determined by its action
on the Sierpiński space S; that is, RS can only be the two-element set {0, 1} equipped with the Sierpiński
topology itself, the indiscrete topology and the discrete topology:

(1) If RS is the Sierpiński space itself, then the generated Galois correspondence (1Top, 1Top) consists of
the identity functors on Top.

(2) If RS endows {0, 1} with the indiscrete topology, then the generated Galois correspondence (L,R) is
given by L sending each topological space X to the discrete space on |X| and R sending each X to
the indiscrete space on |X|. Indeed, (L,R) is a Galois correspondence since

Top(LX, Y ) = Set(|X|, |Y |) = Top(X,RY )

for all topological spaces X, Y .

(3) There is no Galois correspondence (L,R) on Top with RS being the discrete space. In fact, if such
(L,R) exists, then

Top(LX,S) = Top(X,RS) (6.iii)

for any topological space X. Note that continuous maps LX // S are precisely the characteristic
functions of open subsets of LX, while continuous maps X // RS are precisely the characteristic
functions of clopen subsets of X. Hence, Equation (6.iii) means that the topology of LX should
exactly consists of all clopen subsets of X. However, the collection of clopen subsets of a topological
space X may not form a topology on |X|; for instance, when X = Rl is the Sorgenfrey line. This
negates the existence of such a Galois correspondence.

Example 6.5. Since the two-element Boolean algebra 2 is a co-Sierpiński object of Ord, a Galois corre-
spondence (L,R) on Ord is completely determined by L2, which could endow the two-element set {0, 1}
with the canonical order 0 ≤ 1, the discrete order and the indiscrete order. The induced three Galois
correspondences on Ord are as follows:

(1) If L2 = 2, then the generated Galois correspondence (1Ord, 1Ord) consists of the identity functors on
Ord.
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(2) If L2 endows {0, 1} with the discrete order, then the generated Galois correspondence (L,R) is given
by L sending each ordered set X to the discrete order “=” on |X| and R sending each X to the
indiscrete order on |X| (i.e., the relation |X| × |X|). Indeed, (L,R) is a Galois correspondence since

Ord(LX, Y ) = Set(|X|, |Y |) = Ord(X,RY )

for all ordered sets X, Y .

(3) If L2 endows {0, 1} with the indiscrete order, then the generated Galois correspondence (L,R) may
be described as follows:

• LX sends each ordered set X = (X,≤) to the equivalence relation ≤L on |X| generated by ≤,
i.e., the intersection of the equivalence relations on |X| that contain ≤.

• RX sends each ordered set X = (X,≤) to the equivalence relation ≤R=≤ ∩ ≤op on |X|.

To see that (L,R) is a Galois correspondence on Ord, for any ordered sets X, Y and any map
f : |X| // |Y |, we need to show that f ∈ Ord(LX, Y ) if and only if f ∈ Ord(X,RY ).

On one hand, if f : LX // Y is monotone, then for any x, y ∈ X with x ≤ y, we have x ≤L y and
y ≤L x, which implies that fx ≤ fy and fy ≤ fx in Y , i.e., fx ≤R fy; that is, f : X // RY is
monotone.

On the other hand, suppose that f : X // RY is monotone. For any x, y ∈ X with x ≤L y, there
exist z1, z2, . . . , zn ∈ X such that x = z1, zn = y and zi ≤ zi+1 or zi+1 ≤ zi (i = 1, . . . , n − 1). It
follows that fzi ≤R fzi+1 for all i = 1, . . . , n−1, and consequently fx ≤R fy, which necessarily forces
fx ≤ fy in Y . This proves the monotonicity of f : LX // Y .

7. Fixed points of Galois correspondences

If F : E // E is a Q-functor on a Q-category E (resp. a concrete functor on a concrete category E over
B), there is a Q-subcategory (resp. full subcategory) of E , denoted by Fix(F ), whose objects are fixed points
of F , i.e.,

Fix(F )0 := {X ∈ E0 | FX ∼= X}2.

A Q-functor (resp. concrete functor) F : D // E is called an equivalence (resp. a concrete equivalence)
if there is a Q-functor (resp. concrete functor) G : E //D with

1D ∼= GF and FG ∼= 1E . (7.i)

In this case, we write D ' E to denote that D and E are equivalent Q-categories (resp. concretely equivalent
categories). Moreover, if the symbols “∼=” in (7.i) are replaced by “=”, then F is called an isomorphism
(resp. a concrete isomorphism), and we write D ∼= E to denote that D and E are isomorphic Q-categories
(resp. concretely isomorphic categories).

Remark 7.1. It should be pointed out that our definition of concrete equivalence here is different from [1,
Remark 5.13]. More specifically, a concrete equivalence defined by (7.i) is stronger than a concrete functor
that is an equivalence of (ordinary) categories.

Assuming the axiom of choice, it is not difficult to see that

Proposition 7.2. [24] A Q-functor (resp. concrete functor) F : D //E is an equivalence (resp. a concrete
equivalence) if, and only if,

(1) F is fully faithful in the sense that D(X,Y ) = E(FX,FY ) for all X,Y ∈ D0,

2See Remark 6.3 for the meaning of the symbol “∼=” in the context of concrete categories.
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(2) F is essentially surjective in the sense that there exists X ∈ D0 with Y ∼= FX for all Y ∈ E0.

Given an adjunction L a R : E //D in Q-CAT (resp. a Galois correspondence (L,R) between concrete
categories D and E), it is easy to see that the restrictions of L and R,

L|Fix(RL) : Fix(RL) // Fix(LR) and R|Fix(LR) : Fix(LR) // Fix(RL),

establish an equivalence of Q-categories (resp. a concrete equivalence of concrete categories). Thus, objects
in both Fix(RL) and Fix(LR) will be referred to as fixed points of the adjoint Q-functors L a R (resp. the
Galois correspondence (L,R)).

Theorem 7.3. [11] Let L a R : E // D be an adjunction in Q-CAT. A Q-category X is equivalent to
Fix(RL) if, and only if, there exist essentially surjective Q-functors F : D // X and G : E // X with

L\ = G\ ◦ F\, i.e., E(L−,−) = X (F−, G−). (7.ii)

D

X

F

��

D E
L // E

X

G

��

ED
R

oo ⊥ D

X

F\

��

D E
L\=R\

// E

X

??

G\
◦ ◦

◦

Proof. For the “only if” part, let

F : D // Fix(RL) and G : E // Fix(RL)

be the codomain restriction of RL : D //D and R : E //D, respectively, then F and G are clearly essentially
surjective and satisfy the Equation (7.ii). Conversely, for the “if” part, the restriction

F |Fix(RL) : Fix(RL) // X

of F : D // X is an equivalence of Q-categories. For details we refer to the proof of [11, Theorem 3.3].

If L a R : E //D is an adjunction between total Q-categories, then RL : E // E is a Q-closure operator
[22] in the sense that

1E ≤ RL and RLRL ∼= RL,

and thus Fix(RL) is also a total Q-category by [22, Proposition 3.5]. In this case:

Theorem 7.4. [11] Let L a R : E //D be an adjunction between total Q-categories. A total Q-category X
is equivalent to Fix(RL) if, and only if, there exist dense Q-functors F : A // X , K : A //D and codense
Q-functors G : C // X , H : C // E with

H\ ◦ L\ ◦K\ = G\ ◦ F\, i.e., E(LK−, H−) = X (F−, G−). (7.iii)

A

D
K

;;

C

E
H

cc

A

X
F

((

C

X
G

vv

D E
L // ED
R

oo ⊥

A

D
K\

;; D E
L\=R\

// E

C

H\

##
A

X
F\ (( X

C

G\

66

◦
◦

◦

◦ ◦
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Proof. For the “only if” part, we may find essentially surjective Q-functors F : D // X and G : E // X
with L\ = G\ ◦ F\ by Theorem 7.3. Then the dense Q-functors F : D // X , 1D : D //D and the codense
Q-functors G : E // X , 1E : E // E clearly satisfy (7.iii). Conversely, for the “if” part, let

LanK F : D // X and RanH G : E // X

A

D
K

55

C

E
H

ii

A

X
F

++

C

X
G

ss

D E
L // ED
R

ooD

X

LanK F

��

E

X

RanH G

��

⊥

denote the left Kan extension of F along K and the right Kan extension of G along H given by

(LanK F )X = colimK\(−,X)F and (RanH G)Y = limH\(Y,−)G,

respectively, whose existence is guaranteed by the totality of X . Then LanK F and RanH G are both
essentially surjective, and satisfy

L\ = (RanH G)\ ◦ (LanK F )\.

Hence, by Theorem 7.3, X is equivalent to Fix(RL). For details we refer to the proof of [11, Theorem
5.1].

By Propositions 2.1 and 4.7, Theorems 7.3 and 7.4 may be formulated in the context of concrete categories
as follows:

Theorem 7.5. Let (L,R) be a Galois correspondence between concrete categories D and E over B. A
concrete category X over B is concretely equivalent to Fix(RL) if, and only if, there exist essentially surjective
concrete functors F : D // X and G : E // X such that

E(L−,−) = X (F−, G−). (7.iv)

Theorem 7.6. Let (L,R) be a Galois correspondence between topological categories D and E over B. A
topological category X over B is concretely equivalent to Fix(RL) if, and only if, there exist finally dense
concrete functors F : A // X , K : A // D and initially dense concrete functors G : C // X , H : C // E
with

E(LK−, H−) = X (F−, G−). (7.v)

Example 7.7. For the Galois correspondence (L,R) on Top given in Example 6.4(2), Fix(RL) is concretely
equivalent to Set. In fact, since the forgetful functor |-| : Top // Set is clearly surjective on objects and

Top(LX, Y ) = Set(|X|, |Y |)

for all topological spaces X, Y , the conclusion follows immediately from Theorem 7.5.

Top

Set

|-|
��

Top Top
L //

Top

Set

|-|
��

TopTop
R

oo ⊥ Ord

Set

|-|
��

Ord Ord
L //

Ord

Set

|-|
��

OrdOrd
R

oo ⊥

Similarly, for the Galois correspondence (L,R) on Ord given in Example 6.5(2), we may also deduce anal-
ogously as above that Fix(RL) ' Set.
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Example 7.8. For the Galois correspondence (L,R) on Ord given in Example 6.5(3), Fix(RL) is concretely
equivalent to the category Eqv given in Example 5.9. In fact, since the two-element Boolean algebra
2 is simultaneously initially dense and finally dense in Ord (see Example 5.8(1)), while L2 and R2 are
respectively finally dense and initially dense in Eqv (see Example 5.9), the conclusion follows from Theorem
7.6 because (7.v) reduces to a trivial equation

Ord(L2,2) = Eqv(L2, R2).

{2}

Ord

- 


;;

{2}

Ord

1 Q

cc

{2}

Eqv
L|{2} ))

{2}

Eqv
R|{2}uu

Ord Ord
L //

OrdOrd
R

oo ⊥

Example 7.9. There is a Galois correspondence (L,R) between Ord and Top, where L sends each ordered
set X to the topological space with all lower subsets of X as its closed subsets, and R sends each topological
space X to its specialization order on |X|. We claim that Fix(RL) is concretely equivalent to Ord. In fact,
since 2 is both initially dense and finally dense in Ord, and the Sierpiński space S is initially dense in Top,
the conclusion follows from Theorem 7.6 because (7.v) now becomes a trivial equation

Top(L2, S) = Ord(2, RS).

{2}

Ord

- 


;;

{S}

Top

1 Q

cc

{2}

Ord

v�

))

{S}

Ord
R|{S}uu

Ord Top
L //

TopOrd
R

oo ⊥

A topological category D over B is called the MacNeille completion [6, 1] of its full subcategory E if
E is simultaneously initially dense and finally dense in D. The MacNeille completion of E is unique up to
concrete isomorphism (cf. [1, Exercise 21H]), and we denote by

ME

the MacNeille completion of E . In fact, the MacNeille completion is a special case of a much more general
construction in quantaloid-enriched categories, as we will describe below.

Given a quantaloid Q and a Q-category E , presheaves (resp. copresheaves) on E constitute a Q-
(meta)category PE (resp. P†E), with

PE(σ, σ′) = σ′ ↙ σ (resp. P†E(τ, τ ′) = τ ′ ↘ τ)

for all presheaves σ, σ′ (resp. copresheaves τ, τ ′) on E . The Yoneda embedding (resp. co-Yoneda embedding)

YE : E // PE , X 7→ E(−, X) (resp. Y†E : E // P†E , X 7→ E(X,−))

is a dense (resp. codense) Q-functor since

σ = colimσYE (resp. τ = limτY
†
E)

for all presheaves σ (resp. copresheaves τ) on E . It is well known that both PE and P†E are total (see [24,
Proposition 6.4]).
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Each Q-distributor Φ : D //◦ E induces an Isbell adjunction [22]

Φ↑ a Φ↓ : P†E // PD

given by
Φ↑σ = Φ↙ σ and Φ↓τ = τ ↘ Φ

for all presheaves σ on D and copresheaves τ on E , whose fixed points constitute a total Q-(meta)category

MΦ := Fix(Φ↓Φ↑);

explicitly, for any presheaf σ on D,

σ ∈ (MΦ)0 ⇐⇒ Φ↓Φ↑σ = σ,

where “∼=” is replaced by “=” since PD is separated. As an application of Theorems 7.3 and 7.4, we may
present a much easier proof for the representation theorem of MΦ given in [22, 21]:

Theorem 7.10. [22, 21] For any Q-distributor Φ : D //◦ E, a separated total Q-category X is isomorphic
to MΦ if, and only if, there exist a dense Q-functor F : D // X and a codense Q-functor G : E // X with

Φ = G\ ◦ F\, i.e., Φ = X (F−, G−).

Proof. First of all, we show that
Φ = (Y†E)

\ ◦ (Φ↑)\ ◦ (YD)\. (7.vi)

Indeed, since

Φ(X,Y ) = E(Y,−)↘ (Φ↙ D(−, X))

= Y†EY ↘ Φ↑YDX

= P†E(Φ↑YDX,Y
†
EY )

= P†E(−,Y†EY ) ◦ P†E(Φ↑YDX,−)

= (Y†E)
\(−, Y ) ◦ (Φ↑YD)\(X,−)

for any X ∈ D0, Y ∈ E0, it follows that Φ = (Y†E)
\ ◦ (Φ↑YD)\ = (Y†E)

\ ◦ (Φ↑)\ ◦ (YD)\.
Now, for the “only if” part, note that Theorem 7.3 ensures the existence of surjective Q-functors F :

PD // X and G : P†E // X with
(Φ↑)\ = G\ ◦ F\.

Since YD : D //PD is dense and Y†E : E //P†E is codense, it is easy to deduce the density of FYD : D //X
and the codensity of GY†E : E // X by the surjectivity of F and G. Moreover, by Equation (7.vi) we
immediately have

Φ = (Y†E)
\ ◦ (Φ↑)\ ◦ (YD)\ = (Y†E)

\ ◦G\ ◦ F\ ◦ (YD)\ = (GY†E)
\ ◦ (FYD)\.

D

PD
YD

99

E

P†E
Y†
E

ee

D

X
FYD

))

E

X
GY†

Euu

PD P†E
Φ↑

//
P†EPD

Φ↓
ooPD

X

F

��

P†E

X

G

��

⊥

Conversely, for the “if” part, since we already have dense Q-functors YD : D // PD, F : D // X and
codense Q-functors Y†E : E // P†E , G : E // X with

G\ ◦ F\ = Φ = (Y†E)
\ ◦ (Φ↑)\ ◦ (YD)\
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⊥

by Equation (7.vi), the conclusion follows soon from Theorem 7.4, which completes the proof.

In the case that Φ is the identity Q-distributor E : E //◦ E , ME is precisely the MacNeille completion
[22, 4, 20] of the Q-category E , and it can be alternatively characterized as follows by Theorem 7.10:

Corollary 7.11. A total Q-category D is the MacNeille completion of its full Q-subcategory E if E is
simultaneously dense and codense in D.

The above corollary in conjunction with the definition of the MacNeille completion of a concrete category
reproduces the following result of Garner:

Corollary 7.12. [4] A topological category D over B is the MacNeille completion of its full subcategory E
if, and only if, D is the MacNeille completion of its QB-subcategory E.
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