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Abstract

For a small quantaloid Q, it is shown that the category of Q-distributors and diagonals is equivalent to a quotient cat-
egory of the category of Q-interior spaces and continuous Q-distributors. Kan adjunctions induced by Q-distributors
play a crucial role in establishing this equivalence.
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1. Introduction

Given a (unital) quantale [28] Q, the category D(Q) of diagonals [17, 27, 39] of Q has been extensively studied in
the fuzzy community; see, e.g., [23, 27, 40, 16, 10, 11, 19]. More specifically, D(Q) is a quantaloid [30, 37, 38, 39],
and categories enriched in D(Q) are precisely Q-preordered Q-subsets [10]. In particular, if Ω is a frame, then
symmetric D(Ω)-categories are Ω-sets [6], and D(Ω)-categories are skew Ω-sets [4]; if [0,∞] is the Lawvere quantale
[22], then D[0,∞]-categories are (generalized) partial metric spaces [25, 5, 17, 27, 39].

In fact, the construction of diagonals is well known in category theory. From each category C we may construct
the arrow category Arr(C) [24] of C, whose objects are C-arrows and whose morphisms from u to v are pairs (s :
dom u // dom v, t : cod u // cod v) of C-arrows such that the square

• •
t

//

•

•

u

��

• •
s // •

•

v

��

is commutative. There is a congruence on Arr(C), given by (s, t) ∼ (s′, t′) if the commutative squares

• •
t

//

•

•

u

��

• •
s // •

•

v

��
• •

t′
//

•

•

u

��

• •
s′ // •

•

v

��

•

•
""

•

•
""

have the same diagonal; that is, if v ◦ s = t ◦ u = v ◦ s′ = t′ ◦ u. The induced quotient category

D(C) := Arr(C)/∼

is precisely the Freyd completion [7, 8, 9] of C. In a nutshell, the category of diagonals of a category C is the Freyd
completion of C, and it has received considerable attention in the realm of category theory as well [13, 6, 42, 14, 33,
15, 41].
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Distributors [1, 2, 3] (also profunctors or bimodules) generalize functors in the same way as relations generalize
maps. For a small quantaloid Q, the category Q-Dist of Q-categories and Q-distributors is again a (large) quantaloid.
The aim of this paper is to investigate the category

D(Q-Dist)

of diagonals of the quantaloid Q-Dist.
In order to explain the motivation of the results of this paper, let us recall that a Chu transform [34, 35] (also

infomorphism [31, 36])
( f , g) : (ϕ : X //◦ Y) // (ψ : X′ //◦ Y ′)

between Q-distributors is a pair of Q-functors f : X // X′ and g : Y ′ // Y , such that

ψ ◦ f\ = g\ ◦ ϕ, or equivalently, ψ↙ f \ = g\ ↘ ϕ, (1.i)

where f\ and f \ are the graph and cograph of f , respectively, and ↙, ↘ are left and right implications in Q-Dist,
respectively. The two equivalent characterizations of Chu transforms in (1.i) allow us to extend the category Q-Chu
of Q-distributors and Chu transforms in two directions (see [33, Proposition 3.2.1]):

Arr(Q-Dist) ChuCon(Q-Dist)op

Q-Chu

Arr(Q-Dist)

(�\,�\)

uu

Q-Chu

ChuCon(Q-Dist)op

(�\,�\)

))

D(Q-Dist) B(Q-Dist)op

Arr(Q-Dist)

D(Q-Dist)
��

Arr(Q-Dist) ChuCon(Q-Dist)opChuCon(Q-Dist)op

B(Q-Dist)op
��

(1.ii)

In the above diagram, ChuCon(Q-Dist) and B(Q-Dist), called the categories of Chu connections and back diagonals
[33] of Q-Dist, dualize the constructions of Arr(Q-Dist) and D(Q-Dist), respectively. In fact, all the categories in
(1.ii), expect Q-Chu, are actually quantaloids. It is already known that

• B(Q-Dist) is dually equivalent to the quantaloid Q-Sup(= Q-CCat) of separated complete Q-categories and
left adjoint Q-functors [33], and

• Q-Sup is dually equivalent to the quantaloid (Q-ClsDist)cl of Q-closure spaces and closed continuous Q-
distributors [32].

Hence, the combination of the main results of [32, 33] renders equivalences of quantaloids

B(Q-Dist)op ' Q-Sup ' (Q-ClsDist)op
cl , (1.iii)

which unveil the categorical and topological nature of back diagonals between Q-distributors.
Since B(Q-Dist) may be considered as a dualization of D(Q-Dist) (cf. [33, Subsection 1.1]), it is natural to ask

whether similar equivalences of categories could be established for D(Q-Dist). In other words, is it possible to find
any categorical or topological interpretation of diagonals between Q-distributors?

Unfortunately, if we take a closer look at the difference between D(Q-Dist) and B(Q-Dist), we would see that
neither Q-Sup nor its dual construction Q-Inf (the category of separated complete Q-categories and right adjoint
Q-functors) can be (dually) equivalent to D(Q-Dist):

(1) The canonical functor ChuCon(Q-Dist)op //Q-Sup that leads to the equivalence B(Q-Dist)op ' Q-Sup (see
[33, Proposition 3.3.1]) is constructed through fixed points of Isbell adjunctions [36], while the parallel functor
Arr(Q-Dist)op // Q-Sup (see [18, Proposition 5.1]) is constructed through fixed points of Kan adjunctions
[36].

(2) In the special case that Q is a commutative and integral quantale, it is already known from [21] that every
complete Q-category is isomorphic to the Q-category of fixed points of some Isbell adjunction, but it does not
hold for Kan adjunction. Indeed, [21, Theorem 5.3] actually states that every complete Q-category is isomorphic
to the Q-category of fixed points of some Kan adjunction if, and only if, Q is a Girard quantale [28, 43].
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As a result of (1) and (2), the canonical functor from D(Q-Dist) to Q-Sup (or Q-Inf) cannot be essentially surjective
on objects, and thus it cannot be an equivalence of categories. As a compromise, it is proved in [18, Theorem 5.5] that
there is an equivalence of quantaloids

D(Q-Dist)op
reg ' (Q-Sup)ccd, (1.iv)

where D(Q-Dist)reg is the full subquantaloid of D(Q-Dist) with objects restricting to regular Q-distributors, and
(Q-Sup)ccd is the full subquantaloid of Q-Sup with objects restricting to completely distributive Q-categories. How-
ever, the equivalence (1.iv) cannot be extended to D(Q-Dist)op and Q-Sup.

In spite of the difficulty in searching for the categorical meaning of diagonals through complete Q-categories, in
this paper we manage to present a topological interpretation of diagonals via Q-interior spaces. As a dual notion of
Q-closure space [32], a Q-interior space (X, a) is defined as a Q-category X equipped with a Q-interior operator [36]
a on its presheaf Q-category PX. By constructing an adjunction

K a I : Q-Int //Q-Chu,

it is shown in Section 4 that the category Q-Int of Q-interior spaces and continuous Q-functors is a retract and
coreflective subcategory of Q-Chu (Theorem 4.5). Explicitly, the functor K sends each Q-distributor ϕ : X //◦ Y to
the Q-interior space (X, ϕ∗ϕ∗), where

ϕ∗ a ϕ∗ : PX // PY

is the Kan adjunction [36] induced by ϕ.
Since the continuity of a Q-functor between Q-interior spaces is completely determined by its graph, it is natural

to formulate the notion of continuous Q-distributor; see Definition 5.1. In Section 5 we construct a full functor

K̂ : Arr(Q-Dist) //Q-IntDist,

which coincides with K on objects and has a right inverse Î : Q-IntDist //Arr(Q-Dist); hence, Q-IntDist is a retract
of Arr(Q-Dist) (Proposition 5.6).

In fact, Q-IntDist is a quantaloid, and there is a congruence on Q-IntDist, given by ζ ∼ ζ′ : (X, a) //◦ (Y, b) if

ζ∗b = ζ′∗b,

which intuitively identifies “continuous maps that are indistinguishable by preimages of open sets”, and we denote the
quotient quantaloid by (Q-IntDist)o. The main result of this paper, Theorem 6.4, gives an equivalence of quantaloids

D(Q-Dist) ' (Q-IntDist)o. (1.v)

Therefore, from the topological point of view, we may conclude that a diagonal between Q-distributors is essentially
an equivalence class of continuous Q-distributors between Q-interior spaces.

Moreover, we establish the discrete version of the equivalence (1.v) in Section 7 (Theorem 7.3), which is in
particular applied to (classical) interior spaces and topological spaces (Corollaries 7.4 and 7.5). Finally, in Section 8
we discuss a special case, i.e., when Q is a Girard quantaloid. In this case, we have an isomorphism of quantaloids

D(Q-Dist) � B(Q-Dist)

by Propositions 8.2 and 8.4. Consequently, the equivalences (1.iii) and (1.v) are combined to

D(Q-Dist) ' B(Q-Dist) ' (Q-IntDist)o ' (Q-ClsDist)cl ' (Q-Sup)op

if Q is Girard (Theorem 8.5).

2. Diagonals of a quantaloid

A quantaloid [30] is a category enriched in the symmetric monoidal closed category Sup. Explicitly, a quantaloid
Q is a (possibly large) 2-category with its 2-cells given by order, such that each hom-set Q(p, q) is a complete lattice
and the composition ◦ of Q-arrows preserves joins on both sides, i.e.,

v ◦
(∨

i∈I

ui

)
=

∨
i∈I

v ◦ ui,
(∨

i∈I

vi

)
◦ u =

∨
i∈I

vi ◦ u
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for all Q-arrows u, ui : p // q and v, vi : q // r (i ∈ I). Hence, Q has “internal homs”, denoted by↙ and↘ , as the
right adjoints of the composition maps:

(− ◦ u) a (− ↙ u) : Q(p, r) //Q(q, r) and (v ◦ −) a (v↘ −) : Q(p, r) //Q(p, q);

explicitly,
v ◦ u 6 w ⇐⇒ v 6 w↙ u ⇐⇒ u 6 v↘ w

for all Q-arrows u : p // q, v : q // r, w : p // r.
A homomorphism of quantaloids is a functor between the underlying categories that preserves joins of arrows. A

homomorphism of quantaloids is full (resp. faithful, an equivalence of quantaloids, an isomorphism of quantaloids) if
the underlying functor is full (resp. faithful, an equivalence of underlying categories, an isomorphism of underlying
categories).

Each quantaloid Q induces an arrow category Arr(Q) of Q with Q-arrows as objects and pairs (s : p // p′, t :
q // q′) of Q-arrows satisfying

v ◦ s = t ◦ u

q q′
t
//

p

q

u

��

p p′s // p′

q′

v

��

as arrows from u : p // q to v : p′ // q′. Arr(Q) is again a quantaloid with the componentwise local order inherited
from Q.

A congruence ϑ on a quantaloid Q consists of a family of equivalence relations ϑp,q on each hom-set Q(p, q) that
is compatible with compositions and joins of Q-arrows, i.e., (v ◦ u, v′ ◦ u′) ∈ ϑp,r whenever (u, u′) ∈ ϑp,q, (v, v′) ∈ ϑq,r

and
(∨

i∈I

ui,
∨
i∈I

u′i
)
∈ ϑp,q whenever (ui, u′i) ∈ ϑp,q for all i ∈ I.

Each congruence ϑ on Q induces a quotient quantaloid Q/ϑ equipped with the same objects as Q. Compositions
and joins of arrows in Q/ϑ are clearly well defined, and the obvious quotient functor

Q //Q/ϑ

is a full quantaloid homomorphism.
For arrows (s, t), (s′, t′) : u // v in Arr(Q), we denote by (s, t) ∼ (s′, t′) if the commutative squares

q q′
t
//

p

q

u

��

p p′s // p′

q′

v

��

q q′
t′

//

p

q

u

��

p p′s′ // p′

q′

v

��

p

q′
""

p

q′
""

have the same diagonal; that is, if
v ◦ s = t ◦ u = v ◦ s′ = t′ ◦ u.

“∼” gives rise to a congruence on Arr(Q); the induced quotient quantaloid, denoted by

D(Q) := Arr(Q)/∼,

is called the quantaloid of diagonals [39] of Q, which is precisely the Freyd completion [7, 8, 9] of Q.
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3. Quantaloid-enriched categories and their distributors

From now on, we let Q be a small quantaloid, i.e., obQ is a set. A Q-category [30, 37] consists of a set X over
obQ, i.e., a set X equipped with a type map |-| : X // obQ, and hom-arrows α(x, y) ∈ Q(|x|, |y|), such that

1|x| 6 α(x, y) and α(y, z) ◦ α(x, y) 6 α(x, z)

for all x, y, z ∈ X. If (X, α) is a Q-category, each subset Y ⊆ X is equipped with the (full) Q-subcategory structure
inherited from α.

Each Q-category (X, α) is endowed with an underlying (pre)order given by

x 6 y ⇐⇒ |x| = |y| and 1|x| 6 α(x, y),

and we write x � y if x 6 y and y 6 x. We say that (X, α) is separated (or skeletal) if x = y whenever x � y in X.
A Q-functor (resp. fully faithful Q-functor) f : (X, α) // (Y, β) between Q-categories is a map f : X // Y such

that
|x| = | f x| and α(x, y) 6 β( f x, f y) (resp. α(x, y) = β( f x, f y))

for all x, y ∈ X. With the pointwise order of Q-functors given by

f 6 g : (X, α) // (Y, β) ⇐⇒ ∀x ∈ X : f x 6 gx,

Q-categories and Q-functors constitute a locally ordered 2-category Q-Cat. A pair of Q-functors f : (X, α) // (Y, β),
g : (Y, β) // (X, α) forms an adjunction f a g in Q-Cat if β( f x, y) = α(x, gy) for all x ∈ X, y ∈ Y .

A Q-distributor ϕ : (X, α) //◦ (Y, β) between Q-categories is a map that assigns to each pair (x, y) ∈ X × Y a
Q-arrow ϕ(x, y) ∈ Q(|x|, |y|), such that

β(y, y′) ◦ ϕ(x, y) ◦ α(x′, x) 6 ϕ(x′, y′)

for all x, x′ ∈ X, y, y′ ∈ Y . With the pointwise order inherited from Q, the locally ordered 2-category Q-Dist of
Q-categories and Q-distributors becomes a (large) quantaloid in which

ψ ◦ ϕ : (X, α) //◦ (Z, γ), (ψ ◦ ϕ)(x, z) =
∨
y∈Y

ψ(y, z) ◦ ϕ(x, y),

ξ ↙ ϕ : (Y, β) //◦ (Z, γ), (ξ ↙ ϕ)(y, z) =
∧
x∈X

ξ(x, z)↙ ϕ(x, y),

ψ↘ ξ : (X, α) //◦ (Y, β), (ψ↘ ξ)(x, y) =
∧
z∈Z

ψ(y, z)↘ ξ(x, z)

for all Q-distributors ϕ : (X, α) //◦ (Y, β), ψ : (Y, β) //◦ (Z, γ), ξ : (X, α) //◦ (Z, γ); the identity Q-distributor on
(X, α) is given by its hom α : (X, α) //◦ (X, α).

Each Q-functor f : (X, α) // (Y, β) induces an adjunction f\ a f \ in Q-Dist (i.e., α 6 f \ ◦ f\ and f\ ◦ f \ 6 β)
given by

f\ : (X, α) //◦ (Y, β), f\(x, y) = β( f x, y),

f \ : (Y, β) //◦ (X, α), f \(y, x) = β(y, f x),

called the graph and cograph of f , respectively. Obviously, the identity Q-distributor α : (X, α) //◦ (X, α) is the
cograph of the identity Q-functor 1X : X // X. Hence, in what follows

1\X = α

will be our standard notation for the hom of a Q-category X = (X, α) if no confusion arises. It is easy to see that

f 6 g : X // Y ⇐⇒ g\ 6 f\ : X //◦ Y ⇐⇒ f \ 6 g\ : Y //◦ X, (3.i)
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and thus both the graphs and cographs of Q-functors are 2-functorial as

(−)\ : (Q-Cat)co //Q-Dist, (−)\ : (Q-Cat)op //Q-Dist,

where “co” refers to the dualization of 2-cells.
For each q ∈ obQ, let {q} denote the one-object Q-category whose only object has type q and hom 1q. Q-

distributors of the form µ : X //◦ {q} are called presheaves (of type q) on X, which constitute a separated Q-category
PX with

1\PX(µ, µ′) = µ′ ↙ µ

for all µ, µ′ ∈ PX. The Yoneda embedding

yX : X // PX, x 7→ 1\X(−, x)

is clearly a fully faithful Q-functor.
Each Q-distributor ϕ : X //◦ Y induces a Kan adjunction [36]

ϕ∗ a ϕ∗ : PX // PY

in Q-Cat with
ϕ∗λ = λ ◦ ϕ and ϕ∗µ = µ↙ ϕ

for all λ ∈ PY , µ ∈ PX. Moreover, (−)∗ : Q-Dist //(Q-Cat)op is 2-functorial and left adjoint to (−)\ : (Q-Cat)op //Q-Dist
[12], which gives rise to isomorphisms

Q-Dist(X,Y) � Q-Cat(Y,PX)

for all Q-categories X, Y , and we denote by

ϕ̃ : Y // PX, ϕ̃y = ϕ(−, y) (3.ii)

the transpose of each Q-distributor ϕ : X //◦ Y . It is easy to see that

ϕ̃ = ϕ∗yY . (3.iii)

In particular, each Q-functor f : X // Y induces an adjunction f→ a f← in Q-Cat with

f→ := ( f \)∗ : PX // PY and f← := ( f\)∗ = ( f \)∗ : PY // PX, (3.iv)

where ( f\)∗ = ( f \)∗ may be easily verified by routine calculation.

4. Q-interior spaces

A Q-interior space is a pair (X, a) that consists of a Q-category X and a Q-interior operator [36] a on PX; that is,
a Q-functor a : PX // PX with

a 6 1PX and aa = a, (4.i)

where we write aa = a instead of aa � a because the presheaf Q-category PX is separated. We denote by

O(X, a) := {µ ∈ PX | aµ = µ}

the Q-subcategory of PX consisting of open presheaves of (X, a).

Remark 4.1. The definition of Q-interior space here deviates from that of [20], in which a Q-interior space is defined
as a pair (X, c), with c being a Q-closure operator on the copresheaf Q-category P†X of X. In the case that Q is a
commutative quantale [28] and X is a discrete Q-category (i.e., a set), Q-interior operators on PX are essentially the
same as Q-closure operators on P†X; however, it should be noted that they may not coincide when Q is a general
quantaloid.
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A continuous Q-functor f : (X, a) // (Y, b) between Q-interior spaces is a Q-functor f : X // Y such that

f←b 6 a f← : PY // PX.

Q-interior spaces and continuous Q-functors constitute a 2-category Q-Int, with the local order inherited from Q-Cat.
The following proposition shows that continuous Q-functors may be characterized as preimages of open presheaves

staying open, and we will prove its generalized version in the next section (see Proposition 5.2):

Proposition 4.2. Let (X, a), (Y, b) be Q-interior spaces. For each Q-functor f : X // Y, the following statements are
equivalent:

(i) f : (X, a) // (Y, b) is a continuous Q-functor.

(ii) f←b 6 a f←b, thus f←b = a f←b; that is, f←λ ∈ O(X, a) whenever λ ∈ O(Y, b).

(iii) b( f\)∗ 6 b( f\)∗a, thus b( f\)∗ = b( f\)∗a.

Recall that a Chu transform [34, 35] (called infomorphism in [31, 36])

( f , g) : (ϕ : X //◦ Y) // (ψ : X′ //◦ Y ′)

between Q-distributors is a pair of Q-functors f : X // X′ and g : Y ′ // Y , such that ψ ◦ f\ = g\ ◦ ϕ, or equivalently,
ψ( f−,−) = ϕ(−, g−).

X′ Y ′
ψ
//

X

X′

f

��

X Y
ϕ

// Y

Y ′

OO

g

◦

◦

X′ Y ′
ψ
//

X

X′

f\

��

X Y
ϕ

// Y

Y ′

g\

��

◦

◦

◦ ◦

With Chu transforms being ordered as

( f , g) 6 ( f ′, g′) : ϕ // ψ ⇐⇒ f 6 f ′ and g > g′,

we obtain a locally ordered 2-category Q-Chu of Q-distributors and Chu transforms.
Note that the Kan adjunction ϕ∗ a ϕ∗ : PX // PY induced by each Q-distributor ϕ : X //◦ Y gives rise to a

Q-interior operator ϕ∗ϕ∗ : PX // PX, and thus to a Q-interior space (X, ϕ∗ϕ∗). The assignment

(ϕ : X //◦ Y) 7→ (X, ϕ∗ϕ∗)

is in fact functorial from Q-Chu to Q-Int:

Proposition 4.3. Let ( f , g) : ϕ // ψ be a Chu transform between Q-distributors ϕ : X //◦ Y and ψ : X′ //◦ Y ′.
Then f : (X, ϕ∗ϕ∗) // (X′, ψ∗ψ∗) is a continuous Q-functor.

Proof. In order to prove f←ψ∗ψ∗ 6 ϕ∗ϕ∗ f←, let us consider the following diagram:

PX PY
ϕ∗

// PY PX
ϕ∗

//

PX′ PY ′
ψ∗ //PX′

PX

f←

��

PY ′ PX′
ψ∗

//PY ′

PY

g→

��

PX′

PX

f←

��

>

Since f→ = ( f\)∗ and g→ = (g\)∗, one may check that the right square is commutative and that g→ψ∗ 6 ϕ∗ f← similarly
as in the proof of Proposition 5.3, by just trading ζ and η there for f\ and g\, respectively. The details are left to the
readers.
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From Proposition 4.3 we obtain a 2-functor

K : Q-Chu //Q-Int

that sends each Chu transform ( f , g) : (ϕ : X //◦ Y) // (ψ : X′ //◦ Y ′) to the continuous Q-functor

f : (X, ϕ∗ϕ∗) // (X′, ψ∗ψ∗).

Conversely, from each Q-interior space (X, a) we may construct a Q-distributor

κa : X //◦ O(X, a), κa(x, µ) = µ(x). (4.ii)

Proposition 4.4. A Q-functor f : (X, a) // (Y, b) between Q-interior spaces is continuous if, and only if, there exists
a (necessarily unique) Q-functor g : O(Y, b) //O(X, a) such that

( f , g) : (κa : X //◦ O(X, a)) // (κb : Y //◦ O(Y, b))

is a Chu transform.

Proof. Suppose that f : (X, a) // (Y, b) is continuous. From Proposition 4.2(ii) we know that the Q-functor f← :
PY // PX can be restricted to

f←|O(Y,b) : O(Y, b) //O(X, a),

and consequently
κa(x, f←|O(Y,b)λ) = ( f←λ)(x) = λ( f x) = κb( f x, λ)

for all x ∈ X, λ ∈ O(Y, b), where the second equality holds because

( f←λ)(x) = (( f\)∗λ)(x) = λ ◦ f\(x,−) = λ ◦ 1\Y ( f x,−) = λ( f x) (4.iii)

for all λ ∈ PY , x ∈ X. Hence,
( f , f←|O(Y,b)) : κa // κb

is a Chu transform.
Conversely, suppose that g : O(Y, b) //O(X, a) is a Q-functor making ( f , g) : κa // κb a Chu transform. Then

(gλ)(x) = κa(x, gλ) = κb( f x, λ) = λ( f x) = ( f←λ)(x)

for all x ∈ X, λ ∈ O(Y, b), where the last equality follows from (4.iii). This proves the uniqueness of g. In particular,

g = f←|O(Y,b) : O(Y, b) //O(X, a)

means that f←λ ∈ O(X, a) whenever λ ∈ O(Y, b). Hence, f : (X, a) // (Y, b) is continuous by Proposition 4.2(ii).

By Proposition 4.4, the assignment

( f : (X, a) // (Y, b)) 7→ (( f , f←|O(Y,b)) : (κa : X //◦ O(X, a)) // (κb : Y //◦ O(Y, b)))

defines a fully faithful 2-functor
I : Q-Int //Q-Chu

that embeds Q-Int in Q-Chu as a full 2-subcategory. In fact, this embedding is coreflective:

Theorem 4.5. K : Q-Chu // Q-Int is a left inverse and right adjoint of I : Q-Int // Q-Chu; hence, Q-Int is a
retract and a coreflective 2-subcategory of Q-Chu.
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Proof. Step 1. K is a left inverse of I. For each Q-interior space (X, a), since KI(X, a) = (X, (κa)∗(κa)∗), we must show
that

a = (κa)∗(κa)∗. (4.iv)

For each µ ∈ PX, λ ∈ O(X, a), we claim that
µ↙ λ = aµ↙ λ, (4.v)

since the Q-functoriality of a forces

µ↙ λ = 1\PX(λ, µ) 6 1\PX(aλ, aµ) = 1\PX(λ, aµ) = aµ↙ λ,

and the reverse inequality follows from (4.i). It follows that

aµ = κa(−, aµ) (Equation (4.ii))

= 1\O(X,a)(−, aµ) ◦ κa

=
∨

λ∈O(X,a)

1\O(X,a)(λ, aµ) ◦ κa(−, λ)

=
∨

λ∈O(X,a)

(aµ↙ λ) ◦ κa(−, λ)

=
∨

λ∈O(X,a)

(µ↙ λ) ◦ κa(−, λ) (Equation (4.v))

=
∨

λ∈O(X,a)

(µ↙ κa(−, λ)) ◦ κa(−, λ) (Equation (4.ii))

= (µ↙ κa) ◦ κa

= (κa)∗(κa)∗µ

for all µ ∈ PX, as desired.
Step 2. K is a right adjoint of I. For each Q-interior space (X, a), since KI(X, a) = (X, a), it suffices to show that

the identity natural transformation

{1X : (X, a) // KI(X, a) | (X, a) ∈ ob(Q-Int)}

is the unit of the adjunction I a K; that is, for each Q-distributor ψ : Y //◦ Z and continuous Q-functor

h : (X, a) // K(ψ : Y //◦ Z) = (Y, ψ∗ψ∗),

there exists a unique Chu transform

( f , g) : I(X, a) = (κa : X //◦ O(X, a)) // (ψ : Y //◦ Z)

such that the triangle

(X, a) KI(X, a)
1X //(X, a)

(Y, ψ∗ψ∗)

h
%%

KI(X, a)

(Y, ψ∗ψ∗)

K( f ,g)

��

is commutative. Since K( f , g) = f , it remains to show that there exists a unique Q-functor g : Z //O(X, a) such that

(h, g) : (κa : X //◦ O(X, a)) // (ψ : Y //◦ Z)

is a Chu transform. To this end, we define

g := h←ψ̃ : Z // PY //O(X, a).
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First, g is well defined. Indeed, for each z ∈ Z, by Equation (3.iii) we have

ψ̃z = ψ∗yZz = ψ∗ψ∗ψ
∗yZz ∈ O(Y, ψ∗ψ∗),

and together with the continuity of h we deduce that gz = h←ψ̃z ∈ O(X, a).
Second, (h, g) is a Chu transform. Indeed,

κa(x, gz) = (gz)(x) = (h←ψ̃z)(x) = (ψ̃z)(hx) = ψ(hx, z)

for all x ∈ X, z ∈ Z, where the penultimate equality follows from (4.iii).
Finally, for the uniqueness of g, suppose that g′ : Z // O(X, a) is another Q-functor making (h, g′) : κa // ψ a

Chu transform. Then
(g′z)(x) = κa(x, g′z) = ψ(hx, z) = (ψ̃z)(hx) = (h←ψ̃z)(x) = (gz)(x)

for all z ∈ Z, x ∈ X. Hence g′ = g.

Remark 4.6. As pointed out by the anonymous referee, Q-Chu may be identified with the comma category (cf. [24,
Section II.6])

Q-Cat ↓ (−)←,

where (−)← : (Q-Cat)op //Q-Cat is the functor sending each Q-functor f : X // Y to f← : PY //PX (cf. (3.iv)).
Under this identification, I : Q-Int //Q-Chu actually sends each Q-interior space (X, a) to the inclusion Q-functor
O(X, a) �

�
// PX; that is, the transpose κ̃a of the Q-distributor κa : X //◦ O(X, a).

Moreover, it is stated in [26] that a topological space is an extensional Chu space whose columns are closed under
arbitrary union and finite intersection. This observation may be generalized to our context as follows: a Q-distributor
ϕ : X //◦ Y can be identified with a Q-interior space if its transpose ϕ̃ : Y // PX is a fully faithful Q-functor, and if
the image

Im ϕ̃ := {ϕ̃y | y ∈ Y}

of ϕ̃, as a Q-subcategory of PX, is closed under suprema in PX (cf. [31, Proposition 4.1.8]); where the latter require-
ment may also be equivalently expressed as

supPXϕ̃
→λ ∈ Im ϕ̃

for all λ ∈ PY . In this case, it is not difficult to prove that

O(X, ϕ∗ϕ∗) = Im ϕ̃,

so that the Q-interior space identified with ϕ : X //◦ Y is precisely (X, ϕ∗ϕ∗).

5. Continuous Q-distributors

Since f← = ( f\)∗, the continuity of a Q-functor f : (X, a) // (Y, b) between Q-interior spaces is completely
determined by its graph f\ : X //◦ Y , i.e.,

( f\)∗b 6 a( f\)∗ : PY // PX.

If f\ is replaced by an arbitrary Q-distributor ζ : X //◦ Y , we come to the following definition:

Definition 5.1. A continuous Q-distributor ζ : (X, a) //◦ (Y, b) between Q-interior spaces is a Q-distributor ζ :
X //◦ Y such that

ζ∗b 6 aζ∗ : PY // PX.

With the local order inherited from Q-Dist, Q-interior spaces and continuous Q-distributors constitute a (large)
quantaloid Q-IntDist, for it is easy to verify that compositions and joins of continuous Q-distributors are still contin-
uous. There is clearly a 2-functor

(−)\ : (Q-Int)co //Q-IntDist

sending each continuous Q-functor f : (X, a) // (Y, b) to the continuous Q-distributor f\ : (X, a) //◦ (Y, b).
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Proposition 5.2. Let (X, a), (Y, b) be Q-interior spaces. For each Q-distributor ζ : X //◦ Y, the following statements
are equivalent:

(i) ζ : (X, a) //◦ (Y, b) is a continuous Q-distributor.

(ii) ζ∗b 6 aζ∗b, thus ζ∗b = aζ∗b; that is, ζ∗λ ∈ O(X, a) whenever λ ∈ O(Y, b).

(iii) bζ∗ 6 bζ∗a, thus bζ∗ = bζ∗a.

Proof. (i) =⇒ (ii): If ζ∗b 6 aζ∗, then ζ∗b = ζ∗bb 6 aζ∗b.
(ii) =⇒ (iii): This follows from b = bb 6 bζ∗ζ∗b 6 bζ∗aζ∗b 6 bζ∗aζ∗ and ζ∗ a ζ∗.
(iii) =⇒ (i): ζ∗b 6 aζ∗ follows immediately from b 6 bζ∗ζ∗ 6 bζ∗aζ∗ 6 ζ∗aζ∗ and ζ∗ a ζ∗.

As a generalized version of Proposition 4.3 we have:

Proposition 5.3. Each commutative square

Y Y ′
η
//

X

Y

ϕ

��

X X′
ζ
// X′

Y ′

ψ

��

◦

◦

◦ ◦

in Q-Dist induces a continuous Q-distributor ζ : (X, ϕ∗ϕ∗) //◦ (X′, ψ∗ψ∗).

Proof. In order to prove ζ∗ψ∗ψ∗ 6 ϕ∗ϕ∗ζ
∗, let us consider the following diagram:

PX PY
ϕ∗

// PY PX
ϕ∗

//

PX′ PY ′
ψ∗ //PX′

PX

ζ∗

��

PY ′ PX′
ψ∗

//PY ′

PY

η∗

��

PX′

PX

ζ∗

��

>

The commutativity of the right square follows immediately from the functoriality of (−)∗ : (Q-Dist)op //Q-Cat, and
it remains to verify η∗ψ∗ 6 ϕ∗ζ

∗. Indeed,

η∗ψ∗µ
′ = (µ′ ↙ ψ) ◦ η
6 ((µ′ ↙ ψ) ◦ η ◦ ϕ)↙ ϕ

= ((µ′ ↙ ψ) ◦ ψ ◦ ζ)↙ ϕ

6 (µ′ ◦ ζ)↙ ϕ

= ϕ∗ζ
∗µ′

for all µ′ ∈ PX′, and thus the conclusion follows.

Proposition 5.3 actually gives rise to a quantaloid homomorphism

K̂ : Arr(Q-Dist) //Q-IntDist

that sends each arrow (ζ, η) : (ϕ : X //◦ Y) // (ψ : X′ //◦ Y ′) in Arr(Q-Dist) to the continuous Q-distributor
ζ : (X, ϕ∗ϕ∗) //◦ (X′, ψ∗ψ∗).

Since every Chu transform ( f , g) : ϕ // ψ induces an arrow ( f\, g\) : ϕ // ψ in Arr(Q-Dist), there is a 2-functor

(�\,�\) : (Q-Chu)co // Arr(Q-Dist), ( f , g) 7→ ( f\, g\)
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which is neutral on objects. As the commutative square

(Q-Chu)co (Q-Int)co
Kco

//

Arr(Q-Dist)

(Q-Chu)co

OO

(�\,�\)

Arr(Q-Dist) Q-IntDistK̂ // Q-IntDist

(Q-Int)co

OO

(−)\ (5.i)

reveals, K̂ may be viewed as an extension of the functor K. Moreover:

Proposition 5.4. K̂ : Arr(Q-Dist) //Q-IntDist is a full quantaloid homomorphism.

Proof. It remains to show that K̂ is full. Given Q-distributors ϕ : X //◦ Y , ψ : X′ //◦ Y ′, we need to show that

K̂ : Arr(Q-Dist)(ϕ, ψ) //Q-IntDist((X, ϕ∗ϕ∗), (X′, ψ∗ψ∗))

is surjective. To this end, for any continuous Q-distributor ζ : (X, ϕ∗ϕ∗) //◦ (X′, ψ∗ψ∗), we must find a Q-distributor
η : Y //◦ Y ′ such that (ζ, η) : ϕ // ψ is an arrow in Arr(Q-Dist). Indeed, let

η := (ψ ◦ ζ)↙ ϕ : Y //◦ Y ′.

Then

η(−, y′) ◦ ϕ = ϕ∗ϕ∗ζ
∗ψ(−, y′) (η = (ψ ◦ ζ)↙ ϕ)

= ϕ∗ϕ∗ζ
∗ψ∗yY ′y′ (Equations (3.ii) and (3.iii))

= ϕ∗ϕ∗ζ
∗ψ∗ψ∗ψ

∗yY ′y′ (ψ∗ a ψ∗)
= ζ∗ψ∗ψ∗ψ

∗yY ′y′ (Proposition 5.2(ii))
= ζ∗ψ∗yY ′y′ (ψ∗ a ψ∗)
= ψ(−, y′) ◦ ζ (Equations (3.ii) and (3.iii))

for all y′ ∈ Y ′, as desired.

Analogously to (5.i), there is a quantaloid homomorphism

Î : Q-IntDist // Arr(Q-Dist)

such that the square

(Q-Chu)co (Q-Int)cooo
Ico

Arr(Q-Dist)

(Q-Chu)co

OO

(�\,�\)

Arr(Q-Dist) Q-IntDistoo Î Q-IntDist

(Q-Int)co

OO

(−)\ (5.ii)

is commutative, and thus extends I : Q-Int //Q-Chu:

Proposition 5.5. For each continuous Q-distributor ζ : (X, a) //◦ (Y, b) between Q-interior spaces,

(ζ, (ζ∗)\|O(X,a),O(Y,b)) : (κa : X //◦ O(X, a)) // (κb : Y //◦ O(Y, b)))

is an arrow in Arr(Q-Dist), where (ζ∗)\|O(X,a),O(Y,b) is the restriction of (ζ∗)\ : PX //◦ PY on O(X, a) and O(Y, b).

Proof. Note that the Q-distributor (ζ∗)\|O(X,a),O(Y,b) : O(X, a) //◦ O(Y, b) is well defined since ζ∗λ ∈ O(X, a) when-
ever λ ∈ O(Y, b) by Proposition 5.2(ii). The conclusion then follows from

κb(−, λ) ◦ ζ = λ ◦ ζ = ζ∗λ = κa(−, ζ∗λ) = 1\O(X,a)(−, ζ
∗λ) ◦ κa = (ζ∗)\|O(X,a),O(Y,b)(−, λ) ◦ κa

for all λ ∈ O(Y, b).
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The following proposition is an immediate consequence of Theorem 4.5 in combination with the definitions of K̂
and Î:

Proposition 5.6. K̂ : Arr(Q-Dist) //Q-IntDist is a left inverse of Î : Q-IntDist //Arr(Q-Dist); hence, Q-IntDist
is a retract of Arr(Q-Dist).

Remark 5.7. As pointed out by the anonymous referee, it is worth considering the comma category

Q-Cat ↓ (−)∗

here, where (−)∗ : (Q-Dist)op //Q-Cat sends each Q-distributor ϕ : X //◦ Y to the Q-functor ϕ∗ : PY //PX. This
comma category may be identified with the category having Q-distributors as objects and pairs (ζ : X //◦ X′, g :
Y ′ // Y) consisting of a Q-distributor and a Q-functor satisfying

ψ ◦ ζ = g\ ◦ ϕ

as morphisms from ϕ : X //◦ Y to ψ : X′ //◦ Y ′. From Proposition 5.5 it is easy to see that Q-IntDist can be embed-
ded into Q-Cat ↓ (−)∗ by sending each continuous Q-distributor ζ : (X, a) //◦ (Y, b) to (ζ, ζ∗|O(Y,b)) : κa // κb, and
analogously to Theorem 4.5 one may prove that Q-IntDist is a retract and a coreflective subcategory of Q-Cat ↓ (−)∗.

6. Diagonals between Q-distributors as continuous Q-distributors

For continuous Q-distributors ζ, ζ′ : (X, a) //◦ (Y, b) between Q-interior spaces, we denote by ζ ∼ ζ′ if

ζ∗b = ζ′∗b. (6.i)

To see the intuition of (6.i), let us consider the case that ζ = f\ and ζ′ = f ′
\

for some continuous Q-functors f , f ′ :
(X, a) // (Y, b). Then (6.i) becomes

f←b = f ′←b;

that is, f ∼ f ′ if the preimages of each open presheaf under f and f ′ are identical.
It is not difficult to see that “∼” gives rise to a congruence on the quantaloid Q-IntDist, and we denote the induced

quotient quantaloid by
(Q-IntDist)o := Q-IntDist/∼ .

Proposition 6.1. For arrows (ζ, η), (ζ′, η′) : (ϕ : X //◦ Y) // (ψ : X′ //◦ Y ′) in Arr(Q-Dist), the following state-
ments are equivalent:

(i) (ζ, η) ∼ (ζ′, η′) : ϕ // ψ.

(ii) ζ ∼ ζ′ : (X, ϕ∗ϕ∗) //◦ (X′, ψ∗ψ∗).

Proof. (i) =⇒ (ii): If ψ ◦ ζ = ψ ◦ ζ′, then the functoriality of (−)∗ : (Q-Dist)op //Q-Cat ensures that ζ∗ψ∗ = ζ′∗ψ∗.
Thus ζ∗ψ∗ψ∗ = ζ′∗ψ∗ψ∗.

(ii) =⇒ (i): If ζ∗ψ∗ψ∗ = ζ′∗ψ∗ψ∗, then

ζ∗ψ∗ = ζ∗ψ∗ψ∗ψ
∗ = ζ′∗ψ∗ψ∗ψ

∗ = ζ′∗ψ∗.

It follows from (3.ii) and (3.iii) that

ψ(−, y′) ◦ ζ = ζ∗ψ∗yY ′y′ = ζ′∗ψ∗yY ′y′ = ψ(−, y′) ◦ ζ′

for all y′ ∈ Y ′. Thus ψ ◦ ζ = ψ ◦ ζ′.
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Proposition 6.1 indicates that K̂(ζ, η) = ζ : (X, ϕ∗ϕ∗) //◦ (X′, ψ∗ψ∗) is equal to K̂(ζ′, η′) = ζ′ in (Q-IntDist)o

whenever (ζ, η) ∼ (ζ′, η′) : ϕ // ψ in Arr(Q-Dist). Hence, the universal property of the quotient quantaloid
D(Q-Dist) = Arr(Q-Dist)/∼ ensures that there is a (unique) quantaloid homomorphism

K̂d : D(Q-Dist) // (Q-IntDist)o

making the square

Q-IntDist (Q-IntDist)oo
//

Arr(Q-Dist)

Q-IntDist

K̂

��

Arr(Q-Dist) D(Q-Dist)d // D(Q-Dist)

(Q-IntDist)o

K̂d

��

commute, where d and o are the obvious quotient homomorphisms (so that the composition of o and K̂ is also a full
quantaloid homomorphism).

Proposition 6.2. For continuous Q-distributors ζ, ζ′ : (X, a) //◦ (Y, b) between Q-interior spaces, the following
statements are equivalent:

(i) ζ ∼ ζ′ : (X, a) //◦ (Y, b).

(ii) (ζ, (ζ∗)\|O(X,a),O(Y,b)) = (ζ′, (ζ′∗)\|O(X,a),O(Y,b)) : (κa : X //◦ O(X, a)) // (κb : Y //◦ O(Y, b))).

Proof. Just note that (ζ∗)\|O(X,a),O(Y,b) = (ζ′∗)\|O(X,a),O(Y,b) means precisely ζ∗|O(Y,b) = ζ′∗|O(Y,b), which is an alternative
expression of (6.i).

Proposition 6.2 shows that Îζ = Îζ′ whenever ζ ∼ ζ′ : (X, a) //◦ (Y, b). The universal property of the quotient
quantaloid (Q-IntDist)o then guarantees the existence of a (unique) quantaloid homomorphism

Îo : (Q-IntDist)o // Arr(Q-Dist)

making the triangle

Q-IntDist (Q-IntDist)oo
//

Arr(Q-Dist)

Q-IntDist

OO

Î

Arr(Q-Dist)

(Q-IntDist)o

jj

Îo

commute, and the composition of d and Îo produces a quantaloid homomorphism

Îd : (Q-IntDist)o // D(Q-Dist).

Q-IntDist (Q-IntDist)oo
//

Arr(Q-Dist)

Q-IntDist

K̂

��

Arr(Q-Dist) D(Q-Dist)d // D(Q-Dist)

(Q-IntDist)o

K̂d

��

Q-IntDist (Q-IntDist)o

Arr(Q-Dist)

Q-IntDist

OO

Î

Arr(Q-Dist)

(Q-IntDist)o

jj

Îo

(Q-IntDist)o

D(Q-Dist)

Îd

OO

From Proposition 5.6 and the constructions of K̂d and Îd it is easy to conclude:

Proposition 6.3. K̂d : D(Q-Dist) // (Q-IntDist)o is a left inverse of Îd : (Q-IntDist)o // D(Q-Dist).

Note that Propositions 5.4 and 6.1 guarantee that K̂d is fully faithful, and Proposition 6.3 implies that K̂d is surjec-
tive on objects. Therefore, we arrive at the main result of this paper:
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Theorem 6.4. K̂d : D(Q-Dist) // (Q-IntDist)o and Îd : (Q-IntDist)o // D(Q-Dist) establish an equivalence of
quantaloids; hence, D(Q-Dist) and (Q-IntDist)o are equivalent quantaloids.

Proof. It remains to verify the claim about Îd. Indeed, since K̂d is an equivalence of quantaloids, there exists a functor
F : (Q-IntDist)o //D(Q-Dist) such that FK̂d is naturally isomorphic to the identity functor on D(Q-Dist), thus so is
ÎdK̂d as there are natural isomorphisms

ÎdK̂d � FK̂d ÎdK̂d � FK̂d,

showing that Îd is also an equivalence of quantaloids.

Remark 6.5. It has been elaborated in [33, Subsection 1.1] that diagonals and back diagonals are dual constructions
of each other. Their duality is once again supported by the equivalences of quantaloids

D(Q-Dist) ' (Q-IntDist)o and B(Q-Dist) ' (Q-ClsDist)cl

given by (1.iii) and Theorem 6.4, from the topological point of view:

• a diagonal between Q-distributors is essentially an equivalence class of continuous Q-distributors between
Q-interior spaces;

• a back diagonal between Q-distributors is essentially an equivalence class of continuous Q-distributors between
Q-closure spaces.

In the case that Q = 2 is the two-element Boolean algebra, D(Dist) is the Freyd completion of the quantaloid Dist
of (pre)ordered sets and distributors, while IntDist is the quantaloid of ordered interior spaces (i.e., ordered sets X
equipped with an interior operator on its down-set lattice) and continuous distributors:

Corollary 6.6. The Freyd completion D(Dist) of the quantaloid Dist is equivalent to IntDisto.

7. Diagonals between Q-relations as continuous Q-relations

Note that every set X over obQ is equipped with a discrete Q-category structure, given by

idX(x, y) =

1|x| if x = y,
⊥|x|,|y| else

for all x, y ∈ X, where ⊥|x|,|y| refers to the bottom element of the complete lattice Q(|x|, |y|). A Q-relation

ϕ : X //7 Y

between sets over obQ is precisely a Q-distributor

ϕ : (X, idX) //◦ (Y, idY ).

Hence, sets over obQ and Q-relations constitute a full subquantaloid of Q-Dist, denoted by

Q-Rel.

It is easy to see that a Q-relation α : X //7 X defines a Q-category (X, α) if

idX 6 α and α ◦ α 6 α, (7.i)

and a Q-relation ϕ : X //7 Y becomes a Q-distributor ϕ : (X, α) //◦ (Y, β) if

β ◦ ϕ ◦ α 6 ϕ. (7.ii)

Proposition 7.1. D(Q-Dist) is equivalent to its full subquantaloid D(Q-Rel).
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Proof. It suffices to show that every Q-distributor ϕ : (X, α) //◦ (Y, β) is isomorphic to its underlying Q-relation
ϕ : X //7 Y in the quantaloid D(Q-Dist). Indeed, it is clear that the identity maps on X and Y are Q-functorial as

1X : (X, idX) // (X, α) and 1Y : (Y, idY ) // (Y, β).

It is routine to verify that

((1X)\, (1Y )\) : (ϕ : X //7 Y) // (ϕ : (X, α) //◦ (Y, β)) and

((1X)\, (1Y )\) : (ϕ : (X, α) //◦ (Y, β)) // (ϕ : X //7 Y)

(Y, idY ) (Y, β)
(1Y )\

//

(X, idX)

(Y, idY )

ϕ

��

(X, idX) (X, α)
(1X )\

// (X, α)

(Y, β)

ϕ

��

(Y, β) (Y, idY )
(1Y )\

//

(X, α)

(Y, β)

ϕ

��

(X, α) (X, idX)
(1X )\

// (X, idX)

(Y, idY )

ϕ

��

◦

◦

◦ ◦

◦

◦

◦ ◦

are arrows in Q-Dist, and satisfy

((1X)\, (1Y )\) ◦ ((1X)\, (1Y )\) = (α, β) ∼ (idX , idY ) : (ϕ : X //7 Y) // (ϕ : X //7 Y),

((1X)\, (1Y )\) ◦ ((1X)\, (1Y )\) = (α, β) : (ϕ : (X, α) //◦ (Y, β)) // (ϕ : (X, α) //◦ (Y, β)),

establishing an isomorphism between ϕ : (X, α) //◦ (Y, β) and ϕ : X //7 Y in D(Q-Dist).

Similarly, we denote by
Q-IntRel and (Q-IntRel)o

the full subquantaloids of Q-IntDist and (Q-IntDist)o, respectively, whose objects are restricted to Q-interior spaces
(X, a) with X being discrete.

Proposition 7.2. (Q-IntDist)o is equivalent to its full subquantaloid (Q-IntRel)o.

Proof. Suppose that (X, α) is a Q-category, i.e., α : X //7 X is a Q-relation satisfying (7.i). If a : P(X, α) //P(X, α)
is a Q-interior operator, then

a0 : P(X, idX) // P(X, idX), a0µ := a(µ↙ α)

defines a Q-interior operator on P(X, idX). Indeed, a0 6 1P(X,idX ) since

a0µ = a(µ↙ α) 6 µ↙ α 6 µ↙ idX = µ

for all µ ∈ P(X, idX). As for a0 = a0a0, note that for any µ ∈ P(X, idX), a0µ ∈ P(X, α) implies that a0µ = a0µ↙ α, and
a0µ ∈ O(X, α, a) implies that aa0µ = a0µ. Thus

a0µ = aa0µ = a(a0µ↙ α) = a0a0µ.

Now it suffices to show that (X, α, a) is isomorphic to (X, idX , a0) in the quantaloid (Q-IntDist)o. Note that

O(X, α, a) = O(X, idX , a0). (7.iii)

Indeed, on one hand, µ ∈ O(X, α, a) implies that a0µ = a(µ↙ α) = aµ = µ, i.e., µ ∈ O(X, idX , a0). On the other hand,
µ ∈ O(X, idX , a0) necessarily forces µ = a0µ = a(µ↙ α) ∈ O(X, α, a).

Since 1X : (X, idX) // (X, α) is a Q-functor, its graph and cograph

(1X)\ : (X, idX , a0) //◦ (X, α, a), (1X)\ : (X, α, a) //◦ (X, idX , a0)

are clearly continuous Q-distributors by (7.iii), and satisfy

(1X)\ ◦ (1X)\ = α ∼ idX : (X, idX , a0) //◦ (X, idX , a0),

(1X)\ ◦ (1X)\ = α : (X, α, a) //◦ (X, α, a),

establishing an isomorphism between (X, α, a) and (X, idX , a0) in (Q-IntDist)o.
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From Theorem 6.4 and Propositions 7.1, 7.2 we soon deduce that:

Theorem 7.3. D(Q-Rel) and (Q-IntRel)o are equivalent quantaloids.

In the case that Q = 2, D(Rel) is precisely the Freyd completion of the quantaloid Rel of sets and relations, while
IntRel is the quantaloid of (classical) interior spaces (i.e., sets X equipped with an interior operator on its powerset
2X) and continuous relations:

Corollary 7.4. The Freyd completion D(Rel) of the quantaloid Rel is equivalent to IntRelo.

Let D(Rel)f denote the full subquantaloid of D(Rel) whose objects are relations ϕ : X //7 Y such that ϕ̃ : Y //2X

is injective and that
Im ϕ̃ = {ϕ̃y | y ∈ Y} = {{x ∈ X | xϕy} | y ∈ Y}

is closed under arbitrary union and finite intersection. Then, by Remark 4.6, D(Rel)f is clearly equivalent to the full
subquantaloid TopRelo of IntRelo consisting of topological spaces:

Corollary 7.5. D(Rel)f and TopRelo are equivalent quantaloids.

8. When Q is a Girard quantaloid

Given a quantaloid Q and a family of Q-arrows D = {dq : q // q}q∈obQ, we say that

• D is a cyclic family, if dp ↙ u = u↘ dq for all Q-arrows u : p −→ q;

• D is a dualizing family, if (dp ↙ u)↘ dp = u = dq ↙ (u↘ dq) for all Q-arrows u : p −→ q.

Q is a Girard quantaloid [29] if it is equipped with a cyclic dualizing family of Q-arrows. In this case, the complement
of a Q-arrow u : p // q is defined as

¬u = dp ↙ u = u↘ dq : q −→ p,

which clearly satisfies ¬¬u = u, and it is straightforward to check that:

Proposition 8.1. If Q is a Girard quantaloid, then

v ◦ u = ¬(¬u↙ v) = ¬(u↘ ¬v)

for all Q-arrows u : p // q, v : q // r.

The aim of this section is to show that, in the case that Q is a small Girard quantaloid, we are able to concatenate
the equivalences given by (1.iii) and Theorem 6.4.

Recall that each quantaloid Q induces a quantaloid ChuCon(Q), whose objects are Q-arrows and whose mor-
phisms are Chu connections [33] (s, t) : (u : p // q) // (v : p′ // q′), i.e., pairs (s : p // p′, t : q // q′) of
Q-arrows satisfying

u↙ s = t ↘ v.

q q′
t

//

p

q

u

��

p p′s // p′

q′

v

��

p′

q

u↙s=t↘v

ww

For Chu connections (s, t), (s′, t′) : u // v, we denote by (s, t) ∼ (s′, t′) if the squares

q q′
t

//

p

q

u

��

p p′s // p′

q′

v

��

q q′
t′

//

p

q

u

��

p p′s′ // p′

q′

v

��

p′

q

u↙s=t↘v

ww

p′

q

u↙s′=t′↘v

ww
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generate the same back diagonal; that is, if

u↙ s = t ↘ v = u↙ s′ = t′ ↘ v.

“∼” gives rise to a congruence on ChuCon(Q), and the induced quotient quantaloid, denoted by

B(Q) := ChuCon(Q)/∼,

is called the quantaloid of back diagonals [33] of Q.

Proposition 8.2. If Q is a Girard quantaloid, then Arr(Q) and ChuCon(Q) are isomorphic quantaloids and, conse-
quently, D(Q) and B(Q) are isomorphic quantaloids.

Proof. Given Q-arrows u : p // q, v : p′ // q′ and a pair (s : p // p′, t : q // q′) of Q-arrows, it follows from
Proposition 8.1 that

v ◦ s = t ◦ u ⇐⇒ ¬u↙ t = s↘ ¬v;

q q′
t

//

p

q

u

��

p p′s // p′

q′

v

��

p p′s
//

q

p

¬u

��

q q′t // q′

p′

¬v

��

p

q′

v◦s=t◦u

''

q′

p

¬u↙t=s↘¬v

ww

⇐⇒

that is, (s, t) : u // v is an arrow in Arr(Q) if, and only if, (t, s) : ¬u // ¬v is a Chu connection. Hence, the
assignment ((s, t) : u // v) 7→ ((t, s) : ¬u // ¬v) defines an isomorphism of quantaloids

¬ : Arr(Q) // ChuCon(Q)

which, clearly, also renders an isomorphism ¬ : D(Q) // B(Q).

Remark 8.3. The condition of Q being Girard is indispensable for the isomorphism D(Q) � B(Q). In the case that
Q is a commutative quantale, it is already known from [19, Theorem 5.18] that there is an isomorphism D(Q) � B(Q)
of quantaloids if, and only if, Q is a Girard quantale [28, 43], i.e., a one-object Girard quantaloid.

If Q is a small Girard quantaloid and X is a Q-category, then

(¬1\X)(y, x) = ¬1\X(x, y)

defines a Q-distributor ¬1\X : X //◦ X, and it is straightforward to check that

{¬1\X : X //◦ X}X∈ob(Q-Dist)

is a cyclic dualizing family of Q-Dist. In fact:

Proposition 8.4. [29] A small quantaloid Q is Girard if, and only if, Q-Dist is a Girard quantaloid.

Therefore, Propositions 8.2 and 8.4 in conjunction with (1.iii) and Theorem 6.4 give rise to the following equiva-
lences:

Theorem 8.5. If Q is a small Girard quantaloid, then there are equivalences of quantaloids

D(Q-Dist) ' B(Q-Dist) ' (Q-IntDist)o ' (Q-ClsDist)cl ' (Q-Sup)op.

As a special case of Theorem 8.5, Corollary 7.4 actually amounts to the following equivalences in the classical
case:

Corollary 8.6. There are equivalences of quantaloids

D(Rel) ' B(Rel) ' IntRelo ' ClsRelcl ' Sup.

Remark 8.7. The equivalences B(Rel) ' Sup and ClsRelcl ' Sup in Corollary 8.6 have appeared in [33, Corollary
3.4.5] and [32, Corollary 4.4.3], respectively, where ClsRelcl is the quantaloid of (classical) closure spaces (i.e., sets
X equipped with a closure operator on its powerset 2X) and closed continuous relations, and the self-duality of the
quantaloid Sup of complete lattices and join-preserving maps is applied here.
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