
INJECTIVE SYMMETRIC QUANTALOID-ENRICHED CATEGORIES

LILI SHEN AND HANG YANG

Abstract. We characterize injective objects, injective hulls and essential embeddings
in the category of symmetric categories enriched in a small, integral and involutive
quantaloid. In particular, injective partial metric spaces are precisely formulated.

1. Introduction

A quantaloid [32] Q is a category enriched in the monoidal-closed category Sup [21]
of complete lattices and sup-preserving maps. Considering Q as a base for enrichment,
a theory of Q-categories, Q-functors and Q-distributors can be developed [32, 35, 36].
Moreover, if Q is involutive, it makes sense to consider symmetric Q-categories [3, 15].

This paper is concerned with injectivity [27, 1] in the category of symmetric Q-
categories. More specifically, since the Lawvere quantale [26]

[0,∞] = ([0,∞],+, 0)

is trivially an involutive quantaloid, and (classical) metric spaces are symmetric [0,∞]-
categories, we wish to find the categorical interpretation of injective metric spaces in the
framework of quantaloid-enriched categories.

It is well known that injective metric spaces, i.e., injective objects in the category Met
of (classical) metric spaces and non-expansive maps, are precisely hyperconvex metric
spaces:

1.1. Theorem. [2, 19, 1, 9] A metric space (X,α) is injective if, and only if, it is hyper-
convex in the sense that for every family {(xj, rj)}j∈J of pairs with xj ∈ X and rj ∈ [0,∞]
satisfying

α(xj, xk) ⩽ rj + rk

for all j, k ∈ J , there exists z ∈ X such that

α(xj, z) ⩽ rj

for all j ∈ J .

Furthermore, the injective hull (also injective envelope) of a metric space was firstly
constructed by Isbell [19], and later characterized by Dress [7] as the tight span:
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1.2. Theorem. [19, 7, 13, 42] The injective hull of a metric space (X,α) is given by its
tight span (T(X,α), σ), where T(X,α) consists of maps µ : X // [0,∞] satisfying

µ(x) = sup
y∈X

(α(x, y)− µ(y))

for all x ∈ X, and
σ(µ, λ) = sup

x∈X
(µ(x)− λ(x))

for all µ, λ ∈ T(X,α).

In this paper we look deeply into the categorical meaning of the concepts of hypercon-
vexity and tight span, and provide a far reaching extension of Theorems 1.1 and 1.2 in the
context of quantaloid-enriched categories. Explicitly, for a small, integral and involutive
quantaloid Q, where the integrality means that the top element of each Q(q, q) is 1q, we
explore injectivity with respect to fully faithful Q-functors (considered as “embeddings”)
in the category

Q-SymCat

of symmetric Q-categories and Q-functors. The main results of this paper are as follows:

• We define hyperconvexity for a symmetric Q-category (Definition 3.1), and show
that a symmetric Q-category is hyperconvex if, and only if, it is an injective object
in Q-SymCat (Theorem 3.6).

• We define the tight span of a symmetric Q-category (Equations (4.i)), and show that
it is precisely the injective hull of a symmetric Q-category in Q-SymCat (Theorem
4.5).

• We show that essential embeddings in Q-SymCat are precisely (co)dense fully
faithful Q-functors (Theorem 5.4).

Finally, in Section 6, we demonstrate that our results can be applied to a large family
of small, integral and involutive quantaloids constructed upon integral and involutive
quantales Q; that is, the quantaloid DQ of diagonals of Q [18, 30, 38]. In particular,
we postulate the concepts of hyperconvexity and tight span for partial metric spaces of
Matthews [28] (Definition 6.4, Corollaries 6.6 and 6.7).

It is noteworthy to point out that, although some techniques used in the classical
proofs of Theorems 1.1 and 1.2 are inevitable in our general setting (mostly regarding the
use of Zorn’s lemma to prove the existence of certain elements), our methods are quite
different from that special case. While the classical proofs of Theorems 1.1 and 1.2 were
mostly formulated in a geometric way, in this paper we avoid pointwise computations and
always proceed by “distributor calculus”, which has the potential for a wider range of
applicability.
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2. Symmetric quantaloid-enriched categories

A quantaloid [32] is a category enriched in the monoidal-closed category Sup [21] of
complete lattices and sup-preserving maps. Explicitly, a quantaloid Q is a category whose
hom-sets are complete lattices, such that the composition of morphisms preserves arbitrary
suprema on both sides. The corresponding right adjoints induced by the compositions

− ◦ u ⊣ − ↙ u : Q(p, r) //Q(q, r) and v ◦ − ⊣ v ↘ − : Q(p, r) //Q(p, q)

satisfy
v ◦ u ⩽ w ⇐⇒ v ⩽ w ↙ u ⇐⇒ u ⩽ v ↘ w

for all morphisms u : p // q, v : q // r, w : p // r in Q, where ↙ and ↘ are called left
and right implications in Q, respectively.

A homomorphism of quantaloids is a functor of the underlying categories that preserves
suprema of morphisms. A quantaloid Q is involutive if it is equipped with an involution;
that is, a homomorphism

(−)◦ : Qop //Q

of quantaloids with
q◦ = q and u◦◦ = u

for all q ∈ obQ and morphisms u : p // q in Q, which necessarily satisfies

(w ↙ u)◦ = u◦ ↘ w◦ and (v ↘ w)◦ = w◦ ↙ v◦ (2.i)

for all morphisms u, uj : p // q (j ∈ J), v : q // r, w : p // r in Q.
Throughout this paper, we let Q denote a small, integral and involutive quantaloid,

where the integrality of Q means that the identity morphism 1q is the top element of the
complete lattice Q(q, q) for all q ∈ obQ.

From Q we form a (large) involutive quantaloid Q-Rel of Q-relations with the follow-
ing data:

• objects of Q-Rel are those of Set/ obQ, i.e., sets X equipped with a type map
|-| : X // obQ;

• a morphism φ : X //7 Y in Q-Rel is a family of morphisms φ(x, y) : |x| // |y|
(x, y ∈ X) in Q, and its composite with ψ : Y //7 Z is given by

ψ ◦ φ : X //7 Z, (ψ ◦ φ)(x, z) =
∨
y∈Y

ψ(y, z) ◦ φ(x, y),

with

idX : X //7 X, idX(x, y) =

{
1|x| if x = y,

⊥ else

serving as the identity morphism on X;
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• the local order in Q-Rel is inherited from Q, i.e.,

φ ⩽ φ′ : X //7 Y ⇐⇒ ∀x ∈ X, ∀y ∈ Y : φ(x, y) ⩽ φ′(x, y);

• implications in Q-Rel are computed pointwise as

ξ ↙ φ : Y //7 Z, (ξ ↙ φ)(y, z) =
∧
x∈X

ξ(x, z) ↙ φ(x, y),

ψ ↘ ξ : X //7 Y, (ψ ↘ ξ)(x, y) =
∧
z∈Z

ψ(y, z) ↘ ξ(x, z)

for all φ : X //7 Y , ψ : Y //7 Z, ξ : X //7 Z in Q-Rel.

• the involution on Q-Rel is given by

φ◦ : Y //7 X, φ◦(y, x) := φ(x, y)◦

for all φ : X //7 Y in Q-Rel.

A Q-category [32, 35] is an internal monad in Q-Rel; that is, an object in Set/ obQ
equipped with a Q-relation α : X //7 X with idX ⩽ α and α ◦ α ⩽ α. For every
Q-category (X,α), the underlying (pre)order on X is given by

x ⩽ y ⇐⇒ |x| = |y| and α(x, y) = 1|x|,

and we write x ∼= y if x ⩽ y and y ⩽ x. It is clear that

x ∼= y ⇐⇒ α(x,−) = α(y,−) ⇐⇒ α(−, x) = α(−, y) (2.ii)

for all x, y ∈ X. We say that (X,α) is separated (also skeletal) if x = y whenever x ∼= y
in X.

A map f : (X,α) // (Y, β) between Q-categories is a Q-functor if

|x| = |fx| and α(x, x′) ⩽ β(fx, fx′)

for all x, x′ ∈ X, and f is fully faithful if α(x, x′) = β(fx, fx′) for all x, x′ ∈ X. With the
pointwise order of Q-functors inherited from Y , i.e.,

f ⩽ g : (X,α) // (Y, β) ⇐⇒ ∀x ∈ X : fx ⩽ gx ⇐⇒ ∀x ∈ X : β(fx, gx) = 1|x|,

Q-categories and Q-functors are organized into a 2-category Q-Cat.
A Q-category (X,α) is symmetric [15] if α◦ = α, i.e.,

α(x, y) = α(y, x)◦ (2.iii)

for all x, y ∈ X. The full subcategory of Q-Cat consisting of symmetric Q-categories is
denoted by

Q-SymCat.
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It is well known that Q-SymCat is a coreflective subcategory of Q-Cat [15], with the
coreflector sending each Q-category (X,α) to its symmetrization (X,αs), where αs =
α ∧ α◦, i.e.,

αs(x, y) = α(x, y) ∧ α(y, x)◦ (2.iv)

for all x, y ∈ X. Indeed, the coreflectivity of Q-SymCat in Q-Cat is easily observed
from the following lemma:

2.1. Lemma. Let (X,α) be a symmetric Q-category, and let (Y, β) be a Q-category. Then
f : (X,α) // (Y, β) is a Q-functor if, and only if, f : (X,α) // (Y, βs) is a Q-functor.

A Q-relation φ : X //7 Y becomes a Q-distributor φ : (X,α) //◦ (Y, β) if

β ◦ φ ◦ α ⩽ φ.

Q-categories and Q-distributors constitute a (not necessarily involutive!) quantaloid
Q-Dist that contains Q-Rel as a full subquantaloid, in which the compositions and
implications are calculated in the same way as in Q-Rel, and the identity Q-distributor
on (X,α) is given by α : (X,α) //◦ (X,α).

Each Q-functor f : (X,α) // (Y, β) induces an adjunction f♮ ⊣ f ♮ in Q-Dist (i.e.,
α ⩽ f ♮ ◦ f♮ and f♮ ◦ f ♮ ⩽ β) given by

f♮ : (X,α) //◦ (Y, β), f♮(x, y) = β(fx, y),

f ♮ : (Y, β) //◦ (X,α), f ♮(y, x) = β(y, fx),

called the graph and cograph of f , respectively. Obviously, the identity Q-distributor
α : (X,α) //◦ (X,α) is the cograph of the identity Q-functor 1X : X // X. Hence, in
what follows

1♮X = α

will be our standard notation for the hom of a Q-category X = (X,α) if no confusion
arises.

It is straightforward to verify the following lemmas:

2.2. Lemma. [34] A Q-functor f : X // Y is fully faithful if, and only if, f ♮ ◦ f♮ = 1♮X .

2.3. Lemma. The following identities hold for all Q-functors f , g and Q-distributors φ,
ψ whenever the operations make sense:

(1) (gf)♮ = g♮ ◦ f♮, (gf)♮ = f ♮ ◦ g♮.

(2) φ(f−, g−) = g♮ ◦ φ ◦ f♮.

(3) [14] (φ↘ ψ) ◦ f♮ = φ↘ (ψ ◦ f♮), f ♮ ◦ (ψ ↙ φ) = (f ♮ ◦ ψ) ↙ φ.
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For each q ∈ obQ, let {q} denote the (necessarily symmetric) one-object Q-category
whose only object has type q and hom 1q. A presheaf µ (of type q) on a Q-category X
is a Q-distributor µ : X //◦ {q}, and presheaves on X constitute a separated Q-category
PX with

1♮PX(µ, µ
′) = µ′ ↙ µ

for all µ, µ′ ∈ PX. Dually, the separated Q-category P†X of copresheaves on X consists
of Q-distributors λ : {q} //◦ X with |λ| = q and

1♮
P†X

(λ, λ′) = λ′ ↘ λ

for all λ, λ′ ∈ P†X.
For each Q-distributor φ : X //◦ Y between symmetric Q-categories, it is easy to see

that
φ◦ : Y //◦ X, φ◦(y, x) := φ(x, y)◦

is also a Q-distributor. Therefore:

• For a symmetric Q-category X, µ : X //◦ {q} is a presheaf on X if, and only if,
µ◦ : {q} //◦ X is a copresheaf on X.

• For a Q-functor f : X // Y between symmetric Q-categories,

f ◦
♮ = f ♮ and (f ♮)◦ = f♮. (2.v)

3. Injective symmetric quantaloid-enriched categories

While discussing the injectivity of Q-categories, it is standard to consider injective objects
with respect to fully faithful Q-functors, which may be treated as “embeddings” of Q-
categories; we refer to [37, 16, 39, 33, 11] for the counterparts in Q-Cat of our main
results:

• A Q-category is an injective object in Q-Cat if, and only if, it is (co)complete.

• The injective hull of a Q-category in Q-Cat is its MacNeille completion.

• Essential embeddings in Q-Cat are precisely dense and codense fully faithful Q-
functors.

The aim of this section is to characterize injective objects (with respect to fully faith-
ful Q-functors) in the category Q-SymCat. To clarify the terminology, we say that a
symmetric Q-category Z is injective in Q-SymCat if, for every Q-functor f : X // Z
and every fully faithful Q-functor g : X // Y between symmetric Q-categories, there
exists a (not necessarily unique) Q-functor h : Y // Z such that hg ∼= f .

X Y
g

//X

Z

f
$$

Y

Z

h

��
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3.1. Definition. A symmetric Q-category X is hyperconvex if, for every presheaf µ on
X satisfying

µ◦ ◦ µ ⩽ 1♮X , (3.i)

there exists z ∈ X such that
µ ⩽ 1♮X(−, z).

3.2. Remark. The reason that we use the term “hyperconvex” is obvious. In the case
that Q = [0,∞] is the Lawvere quantale (see Example 6.1(1)), a (classical) metric space
is hyperconvex if, and only if, it is hyperconvex as a symmetric [0,∞]-category.

3.3. Remark. For the sake of defining hyperconvex partial metric spaces in Section 6,
we point out that a symmetric Q-category X is hyperconvex if, and only if, for every
Q-relation µ : X //7 {q} (not necessarily a presheaf on X) satisfying

µ◦ ◦ µ ⩽ 1♮X ,

there exists z ∈ X such that
µ ⩽ 1♮X(−, z).

Indeed, every Q-relation µ : X //7 {q} gives rise to a presheaf µ◦1♮X on X, and µ satisfies
any of the above inequalities if, and only if, so does µ ◦ 1♮X .

Let Y be a Q-category. Then each subset X ⊆ Y is equipped with the Q-categorical
structure inherited from Y , i.e.,

1♮X(x, x
′) = 1♮Y (x, x

′)

for all x, x′ ∈ X. In this case, we say that X is a Q-subcategory of Y , and Y is a
Q-supercategory of X.

A Q-category X is a retract of a Q-category Y if there are Q-functors i : X //Y and
h : Y //X such that hi ∼= 1X . In this case, h is called a retraction of Y onto X, and i
is called a section of h. When X is symmetric, we say that

• X is a pre-absolute retract in Q-SymCat, if the inclusion Q-functor i : X � � // Y
is a section whenever Y is symmetric Q-supercategory of X with Y \X containing
exactly one element;

• X is an absolute retract in Q-SymCat, if the inclusion Q-functor i : X � � // Y is a
section whenever Y is symmetric Q-supercategory of X.

3.4. Proposition. If X is a retract of a hyperconvex symmetric Q-category Y in Q-SymCat,
then X is also hyperconvex.
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Proof. Suppose that there are Q-functors i : X //Y and h : Y //X satisfying hi ∼= 1X .
Let µ be a presheaf on X satisfying (3.i). Then µ ◦ i♮ is a presheaf on Y , and it follows
from Equations (2.v) and i♮ ⊣ i♮ that

(µ ◦ i♮)◦ ◦ (µ ◦ i♮) = i♮ ◦ µ◦ ◦ µ ◦ i♮ ⩽ i♮ ◦ i♮ ⩽ 1♮Y .

Hence, by the hyperconvexity of Y , there exists z ∈ Y such that

µ ◦ i♮ ⩽ 1♮Y (−, z),

and consequently, the Q-functoriality of h implies that

µ ⩽ 1♮Y (−, z) ↙ i♮ = 1♮Y (−, z) ↙ 1♮Y (−, i−) = 1♮Y (i−, z) ⩽ 1♮X(hi−, hz) = 1♮X(−, hz),

which shows that X is also hyperconvex.

Without the axiom of choice we may characterize hyperconvex symmetric Q-categories
as follows:

3.5. Proposition. A symmetric Q-category X is hyperconvex if, and only if, X is a a
pre-absolute retract in Q-SymCat.

Proof. “ =⇒ ”: Suppose that X is hyperconvex. Let Y be a symmetric Q-supercategory
of X with Y \ X = {y0}. Let i : X � � // Y be the inclusion Q-functor. Then the fully
faithfulness of i ensures that i♮ ◦ i♮ = 1♮X (Lemma 2.2), and it follows from Equations (2.v)
that the presheaf i♮(−, y0) on X satisfies

(i♮(−, y0))◦ ◦ i♮(−, y0) = i♮(y0,−) ◦ i♮(−, y0) ⩽ i♮ ◦ i♮ = 1♮X .

Hence, the hyperconvexity of X guarantees the existence of z0 ∈ X such that

i♮(−, y0) ⩽ 1♮X(−, z0).

Define

h : Y //X, hy =

{
y if y ∈ X,

z0 if y = y0.
(3.ii)

Then h : Y //X is a Q-functor, because

1♮Y (y0, y0) = 1♮X(z0, z0) = 1♮X(hy0, hy0) = 1|y0| (3.iii)

and
1♮Y (x, y0) = i♮(x, y0) ⩽ 1♮X(x, z0) = 1♮X(hx, hy0)

for all x ∈ X. From the definition of h we immediately deduce that h|X = 1X (h|X refers
to the restriction of h on X); that is, the inclusion Q-functor i : X � � // Y is a section.

“ ⇐= ”: Let µ be a presheaf on X satisfying

µ◦ ◦ µ ⩽ 1♮X .
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Define a Q-supercategory
Y := X ∪ {µ}

of X with
1♮Y (x, µ) = µ(x), 1♮Y (µ, x) = µ◦(x), 1♮Y (µ, µ) = 1|µ|

for all x ∈ X. Then Y is symmetric, and the inclusion Q-functor i : X �
�
//Y is a section;

that is, there exists a Q-functor h : Y //X such that h|X ∼= 1X . We claim that

µ ⩽ 1♮X(−, hµ).

Indeed, the Q-functoriality of h implies that

µ(x) = 1♮Y (x, µ) ⩽ 1♮X(hx, hµ) = 1♮X(x, hµ)

for all x ∈ X, which completes the proof.

Assuming the axiom of choice, we arrive at the main result of this section:

3.6. Theorem. Let X be a symmetric Q-category. Then the following statements are
equivalent:

(i) X is hyperconvex.

(ii) X is a pre-absolute retract in Q-SymCat.

(iii) X is an absolute retract in Q-SymCat.

(iv) X is an injective object in Q-SymCat.

Proof. Since (iv) =⇒ (iii) =⇒ (ii) is trivial and (i) ⇐⇒ (ii) is already obtained in
Proposition 3.5, it remains to prove (i) =⇒ (iv).

For symmetric Q-categories X, Y, Z, suppose that Z is hyperconvex, f : X // Z is a
Q-functor and g : X // Y is a fully faithful Q-functor. In what follows we use Zorn’s
lemma to prove the existence of a Q-functor h : Y // Z such that hg ∼= f .

Let Y0 be the Q-subcategory of Y given by

Y0 := {gx | x ∈ X}.

Then, for each y ∈ Y0 we may choose g∗y ∈ X such that gg∗y = y, making g∗ : Y0 //X a
fully faithful Q-functor. It is easy to check that g∗g ∼= 1X through (2.ii), and consequently
fg∗g ∼= f .

Now, let W denote the set of pairs (W,hW ), where Y0 ⊆ W ⊆ Y , hW : W // Z is
a Q-functor, such that hWg ∼= f . We have already seen that (Y0, g

∗g) ∈ W , and thus
W ≠ ∅. Note that W is equipped with a partial order given by

(W,hW ) ⩽ (W ′, hW ′) ⇐⇒ W ⊆ W ′ and hW ′|W = hW ,
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where hW ′|W refers to the restriction of hW ′ onW . Then, it is easy to see that every chain
{(Wj, hWj

) | j ∈ J} ⊆ W has an upper bound in W , given by(⋃
j∈J

Wj, h ⋃
j∈J

Wj

)
.

By Zorn’s lemma, W has a maximal element (W,hW ). We claim that W = Y , which
guarantees the existence of the required h = hW : Y // Z.

We proceed by contradiction. Assume that there exists y0 ∈ Y but y0 ̸∈ W . Let
W0 = W ∪ {y0}. Consider the presheaf µ on Z given by

µ = (Z W
h♮

W //W {|y0|}),
i♮(−,y0)

//◦ ◦

where i : W � � //W0 is the inclusion Q-functor. Then

µ◦ ◦ µ = (h♮
W
)◦ ◦ (i♮(−, y0))◦ ◦ i♮(−, y0) ◦ h♮W

= (hW )♮ ◦ i♮(y0,−) ◦ i♮(−, y0) ◦ h♮W (Equations (2.v))

⩽ (hW )♮ ◦ i♮ ◦ i♮ ◦ h♮W
= (hW )♮ ◦ h♮W (Lemma 2.2)

⩽ 1♮Z . ((hW )♮ ⊣ h♮W )

Hence, the hyperconvexity of Z guarantees the existence of z0 ∈ Z such that

µ ⩽ 1♮Z(−, z0).

Define

hW0 : W0
// Z, hW0y =

{
hWy if y ∈ W,

z0 if y = y0.
(3.iv)

Since gx ∈ Y0 ⊆ W for all x ∈ X and hWg
∼= f , it is clear that hW0g

∼= f . Moreover,
hW0 : W0

// Z is a Q-functor, because

1♮W0
(y0, y0) = 1♮Z(z0, z0) = 1♮Z(hW0y0, hW0y0) = 1|y0| (3.v)

and

1♮W0
(y, y0) = i♮(y, y0) (y ∈ W and i : W � � //W0)

= i♮(−, y0) ◦ 1♮W (y,−)

⩽ i♮(−, y0) ◦ 1♮Z(hWy, hW−) (hW is a Q-functor)

= i♮(−, y0) ◦ h♮W (hWy,−)

= µhWy (definition of µ)

⩽ 1♮Z(hWy, z0)

= 1♮Z(hW0y, hW0y0)
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for all y ∈ W . Therefore, (W0, hW0) ∈ W , contradicting to the maximality of (W,hW ),
which completes the proof.

3.7. Remark. In the proofs of Proposition 3.5 and Theorem 3.6, the integrality of the
quantaloid Q is applied to the Q-functoriality of (3.ii) and (3.iv). In fact, (3.iii) holds
because both 1♮Y (y0, y0) and 1♮X(z0, z0) are equal to 1|y0|, and (3.v) holds because both

1♮W0
(y0, y0) and 1♮Z(z0, z0) are equal to 1|y0|, which may not be true when Q is not integral.

A simple counterexample in which Theorem 3.6 fails is provided below.
Let Q be a one-object quantaloid with three morphisms ⊥ < 1 < ⊤, where 1 is the

identity morphism (so that Q is non-integral and involutive). It is easy to see that the
one-object Q-category {1} with hom 1 is hyperconvex (note that ⊤ ◦ ⊤ = ⊤). However,
{1} is not injective in Q-SymCat. Indeed, let {⊤} be the one-object Q-category with
hom ⊤, and let ∅ be the empty Q-category. Assuming {1} is injective, there must be a
Q-functor h : {⊤} // {1}, which does not exist (because ⊤ > 1 means that the unique
map from {⊤} to {1} is not Q-functorial).

∅ {⊤}g
//∅

{1}
f

$$

{⊤}

{1}

h

��

4. Injective hulls of symmetric quantaloid-enriched categories

In this section we construct the injective hull (with respect to fully faithful Q-functors) of
each symmetric Q-category in Q-SymCat. To this end, for each symmetric Q-category
X we define

LX := {µ ∈ PX | µ◦ ◦ µ ⩽ 1♮X} and TX := {µ ∈ PX | µ◦ = 1♮X ↙ µ} (4.i)

as Q-subcategories of PX, where TX is called the tight span of X. The aim of this section
is to show that TX is precisely the injective hull of X in Q-SymCat.

4.1. Remark. In order to facilitate the definition of the tight span of a partial metric
space in Section 6, we point out that a Q-relation µ : X //7 {q} satisfying

µ◦ = 1♮X ↙ µ, or equivalently, µ = µ◦ ↘ 1♮X ,

must be a presheaf on X. Indeed, the above equality implies that

µ ◦ 1♮X = (µ◦ ↘ 1♮X) ◦ 1
♮
X ⩽ µ◦ ↘ (1♮X ◦ 1♮X) = µ◦ ↘ 1♮X = µ,

which shows that µ : X //◦ {q} is a Q-distributor.

4.2. Lemma. TX is a symmetric Q-category.
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Proof. Combining (2.i) and (4.i), it is straightforward to verify that

1♮TX(λ, µ)
◦ = (µ↙ λ)◦ = λ◦ ↘ µ◦ = λ◦ ↘ (1♮X ↙ µ)

= (λ◦ ↘ 1♮X) ↙ µ = λ↙ µ = 1♮TX(µ, λ)

for all µ, λ ∈ TX.

Note that TX is non-empty as long as X is non-empty. Indeed, for each symmetric
Q-category X, it is easy to see that 1♮X(−, x) ∈ TX for all x ∈ X. In fact, there is a fully
faithful Q-functor

yX : X // TX, x 7→ 1♮X(−, x) (4.ii)

that embeds X into TX, which is actually the codomain restriction of the Yoneda embed-
ding (cf. [35, 34]). Recall that the Yoneda lemma [35] states that

1♮PX(1
♮
X(−, x), µ) = µ(x) (4.iii)

for all µ ∈ PX and x ∈ X. In particular, by restricting (4.iii) to µ ∈ TX we obtain that

(yX)♮(−, µ) = µ. (4.iv)

It is clear that TX ⊆ LX. We point out that TX consist of maximal elements in LX;
that is, if λ ∈ TX, µ ∈ LX and λ ⩽ µ, then

µ◦ ⩽ 1♮X ↙ µ ⩽ 1♮X ↙ λ = λ◦,

which forces µ = λ. Conversely:

4.3. Lemma. For each µ ∈ LX, there exists µ̃ ∈ TX such that µ ⩽ µ̃.

Proof. Let us consider the set

Y := {λ ∈ LX | µ ⩽ λ}.

Since µ ∈ Y , it is clear that Y ̸= ∅. Note that every chain {λj | j ∈ J} ⊆ Y has an
upper bound in Y , given by

∨
j∈J

λj. By Zorn’s lemma, Y has a maximal element µ̃. We

claim that µ̃ ∈ TX.
We proceed by contradiction. Assume that µ̃ ̸∈ TX. Then there exists z ∈ X such

that
µ̃◦(z) < 1♮X(−, z) ↙ µ̃,

which is equivalent to

µ̃(z) < µ̃◦ ↘ (1♮X(−, z))
◦ = µ̃◦ ↘ 1♮X(z,−).

Define a presheaf µ0 on X given by

µ0 := µ̃ ∨ ((µ̃◦ ↘ 1♮X(z,−)) ◦ 1♮X(−, z)).
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Then µ0 ∈ LX. Indeed, since

µ◦
0 = µ̃◦ ∨ (1♮X(z,−) ◦ (1♮X(−, z) ↙ µ̃)),

the inequality µ◦
0 ◦ µ0 ⩽ 1♮X is a direct consequence of

µ̃◦ ◦ µ̃ ⩽ 1♮X ,

µ̃◦ ◦ (µ̃◦ ↘ 1♮X(z,−)) ◦ 1♮X(−, z) ⩽ 1♮X(z,−) ◦ 1♮X(−, z) ⩽ 1♮X ,

1♮X(z,−) ◦ (1♮X(−, z) ↙ µ̃) ◦ µ̃ ⩽ 1♮X(z,−) ◦ 1♮X(−, z) ⩽ 1♮X

and

1♮X(z,−) ◦ (1♮X(−, z) ↙ µ̃) ◦ (µ̃◦ ↘ 1♮X(z,−)) ◦ 1♮X(−, z)
⩽ 1♮X(z,−) ◦ 1|z| ◦ 1♮X(−, z) (Q is integral)

= 1♮X(z,−) ◦ 1♮X(−, z) ⩽ 1♮X .

But µ̃ < µ0, because

µ̃(z) < µ̃◦ ↘ 1♮X(z,−) = (µ̃◦ ↘ 1♮X(z,−)) ◦ 1♮X(z, z) ⩽ µ0(z),

contradicting to the maximality of µ̃.

With Lemma 4.3 we are able to prove the hyperconvexity of TX:

4.4. Lemma. TX is hyperconvex.

Proof. Let Θ be a presheaf on TX satisfying Θ◦ ◦Θ ⩽ 1♮TX . Let λ ∈ PX be given by

λ =
∨

µ∈TX

Θ(µ) ◦ µ.

Then λ ∈ LX, since

λ◦ ◦ λ =
( ∨

µ∈TX

Θ(µ) ◦ µ
)◦

◦
( ∨

µ′∈TX

Θ(µ′) ◦ µ′
)

=
∨

µ∈TX

∨
µ′∈TX

µ◦ ◦Θ◦(µ) ◦Θ(µ′) ◦ µ′

⩽
∨

µ∈TX

∨
µ′∈TX

µ◦ ◦ 1♮TX(µ
′, µ) ◦ µ′ (Θ◦ ◦Θ ⩽ 1♮TX)

=
∨

µ∈TX

∨
µ′∈TX

µ◦ ◦ (µ↙ µ′) ◦ µ′

⩽
∨

µ∈TX

µ◦ ◦ µ

⩽ 1♮X . (TX ⊆ LX and Equations (4.i))

By Lemma 4.3, there exists λ̃ ∈ TX such that λ ⩽ λ̃. It follows that

Θ(µ) ⩽ λ↙ µ ⩽ λ̃↙ µ = 1♮TX(µ, λ̃)

for all µ ∈ TX, which completes the proof.



14 LILI SHEN AND HANG YANG

A fully faithful Q-functor f : X // Y between symmetric Q-categories is essential in
Q-SymCat if, for each symmetric Q-category Z, a Q-functor g : Y //Z is fully faithful
whenever gf : X // Z is fully faithful.

A symmetric Q-category Y is the injective hull of X in Q-SymCat, if Y is injective
in Q-SymCat and there exists an essential fully faithful Q-functor f : X //Y . It is well
known that injective hulls are essentially unique; that is, if Y ′ is another injective hull
of X in Q-SymCat (with an essential fully faithful Q-functor f ′ : X // Y ′), then there
exists an isomorphism g : Y // Y ′ in Q-SymCat with f ′ = gf .

For each symmetric Q-category X, since TX is injective in Q-SymCat by Lemma 4.4
and Theorem 3.6, it is actually the injective hull of X in Q-SymCat:

4.5. Theorem. Let X be a symmetric Q-category. Then the fully faithful Q-functor
yX : X // TX is essential. Hence, the tight span TX is the injective hull of X in
Q-SymCat.

Proof. Let Y be a symmetric Q-category. Let g : TX // Y be a Q-functor such that
gyX : X // Y is fully faithful. Note that for any µ, λ ∈ TX, from (4.i) and (4.iv) we see
that

y♮X(µ,−) = (yX)♮(−, µ)◦ = µ◦ = 1♮X ↙ µ = 1♮X ↙ (yX)♮(−, µ)
and

1♮TX(µ, λ) = λ↙ µ = (yX)♮(−, λ) ↙ (yX)♮(−, µ);

that is, y♮X = 1♮X ↙ (yX)♮ and 1♮TX = (yX)♮ ↙ (yX)♮. By Lemmas 2.2 and 2.3(1), the fully
faithfulness of gyX means that

y♮X ◦ g♮ ◦ g♮ ◦ (yX)♮ = (gyX)
♮ ◦ (gyX)♮ = 1♮X ,

and consequently

g♮ ◦ g♮ ⩽ y♮X ↘ (1♮X ↙ (yX)♮) = y♮X ↘ y♮X = ((yX)♮ ↙ (yX)♮)
◦ = (1♮TX)

◦ = 1♮TX .

As the reverse inequality is an immediate consequence of g♮ ⊣ g♮, we deduce that g♮ ◦ g♮ =
1♮TX , and therefore the fully faithfulness of g follows from Lemma 2.2.

5. Essential embeddings of symmetric quantaloid-enriched categories

Recall that a Q-functor f : X // Y is dense (resp. codense) (cf. [24, Proposition 4.12])
if

1♮Y = f♮ ↙ f♮ (resp. 1♮Y = f ♮ ↘ f ♮). (5.i)

Note that the notions of density and codensity coincide when Y is symmetric: by Equa-
tions (2.v),

1♮Y = f♮ ↙ f♮ ⇐⇒ (1♮Y )
◦ = (f♮ ↙ f♮)

◦ ⇐⇒ 1♮Y = f ♮ ↘ f ♮. (5.ii)

The aim of this section is to characterize essential fully faithful Q-functors in Q-SymCat
(i.e., “essential embeddings” of symmetric Q-categories) through their (co)density.
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5.1. Lemma. Let f : X // Y be a Q-functor between symmetric Q-categories. If f is
dense and fully faithful, then f♮(−, y) ∈ TX for all y ∈ Y .

Proof. Combining Equation (5.i), Lemmas 2.3(3) and 2.2 we compute that

f ♮ = f ♮ ◦ (f♮ ↙ f♮) = (f ♮ ◦ f♮) ↙ f♮ = 1♮X ↙ f♮; (5.iii)

that is,
f♮(−, y)◦ = f ♮(y,−) = 1♮X ↙ f♮(−, y),

i.e., f♮(−, y) ∈ TX, for all y ∈ Y .

The following Lemma 5.2 strengthens Lemma 4.3 by revealing that TX is a retract of
the symmetrization of LX (see (2.iv)):

5.2. Lemma. For each symmetric Q-category X, there exists a Q-functor

mX : (LX)s // TX

whose restriction on TX is 1TX , such that µ ⩽ mXµ for all µ ∈ LX.

Proof. Since TX is symmetric, (LX)s is a Q-supercategory of TX. Since TX is an
absolute retract in Q-SymCat by the hyperconvexity of TX (Lemma 4.4) and Theorem
3.6, there exists a Q-functor mX : (LX)s // TX with mX |TX = 1TX .

To show that µ ⩽ mXµ for any µ ∈ LX, note that µ ⩽ µ◦ ↘ 1♮X by Equations (4.i),
and consequently,

µ(x) = µ(x) ∧ (µ◦ ↘ 1♮X(x,−)) (µ ⩽ µ◦ ↘ 1♮X)

= 1♮PX(1
♮
X(−, x), µ) ∧ 1♮PX(µ, 1

♮
X(−, x))

◦ (Equation (4.iii))

= 1♮(LX)s
(1♮X(−, x), µ)

⩽ 1♮TX(mX(1
♮
X(−, x)),mXµ) (mX is a Q-functor)

= 1♮TX(1
♮
X(−, x),mXµ) (1♮X(−, x) ∈ TX and mX |TX = 1TX)

= (mXµ)(x) (Equation (4.iii))

for all x ∈ X.

5.3. Lemma. Let f : X //Y be a fully faithful Q-functor between symmetric Q-categories.
If f is essential, then TX and TY are isomorphic Q-categories, with an isomorphism in
Q-SymCat given by

(−) ◦ f♮ : TY // TX, λ 7→ λ ◦ f♮.
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Proof. Since f is fully faithful, for each λ ∈ TY , it follows from (4.i) and Lemma 2.2
that

(λ ◦ f♮)◦ ◦ (λ ◦ f♮) = f ♮ ◦ λ◦ ◦ λ ◦ f♮ ⩽ f ♮ ◦ f♮ = 1♮X ;

that is, λ ◦ f♮ ∈ LX. Thus, it is easy to see that (−) ◦ f♮ defines a Q-functor from TY to
LX, and consequently a Q-functor from TY to (LX)s (see Lemma 2.1), which induces a
Q-functor

g :=
(
TY

(−)◦f♮
// (LX)s

mX // TX
)
.

Conversely, note that for each µ ∈ TX,

(µ ◦ f ♮)◦ ◦ (µ ◦ f ♮) = f♮ ◦ µ◦ ◦ µ ◦ f ♮ ⩽ f♮ ◦ f ♮ ⩽ 1♮Y ;

that is, µ ◦ f ♮ ∈ LY . Thus, similarly, there is a Q-functor

h :=
(
TX

(−)◦f♮

// (LY )s
mY // TY

)
.

First, g is fully faithful. Since yY : Y // TY is essential (Theorem 4.5), it is easy to
see that the composite yY f : X // TY is essential. Since

(yY fx) ◦ f♮ = 1♮Y (−, fx) ◦ f♮ = 1♮Y (f−, fx) = 1♮X(−, x)

by Lemma 2.3(2) and the fully faithfulness of f , we obtain that

gyY fx = mX((yY fx) ◦ f♮) = mX(1
♮
X(−, x)) = 1♮X(−, x)

for all x ∈ X. Consequently,

1♮X(x, x
′) = 1♮X(−, x

′) ↙ 1♮X(−, x) = 1♮TX(gyY fx, gyY fx
′)

for all x, x′ ∈ X, showing that gyY f is fully faithful. Hence, the fully faithfulness of g
follows from the essentiality of yY f .

Second, g is surjective. To this end, we show that ghµ = µ for all µ ∈ TX. Indeed,
since µ ◦ f ♮ ∈ LY , it holds that

µ = µ ◦ f ♮ ◦ f♮ ⩽ mY (µ ◦ f ♮) ◦ f♮
by the fully faithfulness of f (Lemma 2.2) and Lemma 5.2. Thus, the maximality of
presheaves in TX forces

µ = mY (µ ◦ f ♮) ◦ f♮, (5.iv)

and consequently
ghµ = mX(mY (µ ◦ f ♮) ◦ f♮) = mXµ = µ.

Therefore, as a fully faithful and surjective Q-functor between separated Q-categories,
g : TY //TX is necessarily an isomorphism in Q-SymCat. Since we have already proved
that gh = 1TX , h : TX // TY must be the inverse of g; that is, hg = 1TY . Thus, for
every λ ∈ TY , replacing µ with gλ in (5.iv) (note that (5.iv) holds for all µ ∈ TX) we
deduce that

gλ = mY ((gλ) ◦ f ♮) ◦ f♮ = (hgλ) ◦ f♮ = λ ◦ f♮,
which completes the proof.
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Now we are ready to present the main result of this section:

5.4. Theorem. Let f : X // Y be a fully faithful Q-functor between symmetric Q-
categories. Then the following statements are equivalent:

(i) f is essential in Q-SymCat.

(ii) f is dense.

(iii) f is codense.

Proof. As (ii) ⇐⇒ (iii) automatically holds by (5.ii), it remains to prove (i) =⇒ (ii) and
(ii)+(iii) =⇒ (i).

(i) =⇒ (ii): Suppose that f is essential. By Lemma 5.3,

g :=
(
Y

yY // TY
(−)◦f♮

// TX
)

is a well-defined Q-functor. Note that

gfx = 1♮Y (−, fx) ◦ f♮ = 1♮Y (f−, fx) = 1♮X(−, x)

for all x ∈ X, the fully faithfulness of gf follows immediately. Hence, g is also fully
faithful, which means that

1♮Y (y, y
′) = 1♮TX((yY y) ◦ f♮, (yY y

′) ◦ f♮) = 1♮TX(f♮(−, y), f♮(−, y
′)) = f♮(−, y′) ↙ f♮(−, y)

for all y, y′ ∈ Y ; that is, 1♮Y = f♮ ↙ f♮.
(ii)+(iii) =⇒ (i): Suppose that Z is symmetric, g : Y // Z is a Q-functor and

gf : X // Z is fully faithful. Applying Lemma 2.2 to the fully faithful Q-functor gf , we
have

f ♮ ◦ g♮ ◦ g♮ ◦ f♮ = (gf)♮ ◦ (gf)♮ = 1♮X .

Thus, with Equation (5.iii) in Lemma 5.1 and the definition of codensity (Equation (5.i))
it is easy to compute that

g♮ ◦ g♮ ⩽ f ♮ ↘ (1♮X ↙ f♮) = f ♮ ↘ f ♮ = 1♮Y .

As the reverse inequality is an immediate consequence of g♮ ⊣ g♮, we deduce that g♮ ◦ g♮ =
1♮Y , and therefore the fully faithfulness of g follows from Lemma 2.2.

5.5. Remark. Lemma 5.3 is pivotal in the proof of “(i) =⇒ (ii)” of Theorem 5.4, where
deriving that f♮(−, y) ∈ TX for all y ∈ Y is the crucial step. The proof of Lemma 5.3
is highly non-trivial, where we invoke some ideas from [7, Subsection 1.13]. However,
our proof of Lemma 5.2, which provides the important retraction needed in the proof of
Lemma 5.3, deviates from [7]: by proving the hyperconvexity of TX (Lemma 4.4) prior
to Lemma 5.2, we are able to immediately deduce the existence of mX : (LX)s // TX.
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5.6. Remark. In the case that Q = [0,∞] is the Lawvere quantale (see Example 6.1(1)),
if we compare Theorem 5.4 with [1, Example 9.13(7)] or [13, Theorem 2], it seems that
our theorem should be parallelly stated as: A fully faithful Q-functor f : X //Y between
symmetric Q-categories is essential if, and only if, f satisfies the following two conditions:

(a) 1♮Y = f♮ ↙ f♮, i.e., f is dense;

(b) f ♮ = 1♮X ↙ f♮, i.e., f♮(−, y) ∈ TX for all y ∈ Y .

In fact, our Lemma 5.1 ensures that the condition (b) is contained in (a), and therefore
the (co)density of a fully faithful Q-functor is sufficient to derive its essentiality.

6. Example: injective partial metric spaces

A (unital) quantale [29, 31] is a one-object quantaloid. In this section, we let

Q = (Q,⊗, 1, ◦)

denote an integral and involutive quantale. Explicitly:

• (Q,⊗, 1) is a monoid;

• Q is equipped with the structure of a complete lattice (with the unit 1 being the
top element);

• the multiplication ⊗ preserves arbitrary suprema on both sides;

• (−)◦ : Q // Q is a sup-preserving map with

q◦◦ = q and (p⊗ q)◦ = q◦ ⊗ p◦

for all p, q ∈ Q.

To avoid confusion, we denote the left and right implications in Q by / and \, respectively,
which satisfy

p⊗ q ⩽ r ⇐⇒ p ⩽ r / q ⇐⇒ q ⩽ p \ r
for all p, q, r ∈ Q. We say that:

• Q is commutative, if p⊗ q = q ⊗ p for all p, q ∈ Q, in which case we write

p→ q := q / p = p \ q

for all p, q ∈ Q. Note that every commutative quantale Q is involutive, with a trivial
involution given by the identity map 1Q : Q // Q.

• Q is divisible, if
(u / q)⊗ q = u = q ⊗ (q \ u) (6.i)

whenever u ⩽ q in Q. Note that every quantale satisfying (6.i) is necessarily integral
(cf. [30, Proposition 2.1] and [40, Proposition 3.1]).
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6.1. Example. We list here some examples of integral and involutive quantales:

(1) The Lawvere quantale [0,∞] = ([0,∞],+, 0) [26] is commutative and divisible,
where [0,∞] is the extended non-negative real line equipped with the order “⩾”,
and “+” is the usual addition extended via

p+∞ = ∞+ p = ∞

to [0,∞]. The implication in [0,∞] is given by1

p→ q = max{0, q − p} (6.ii)

for all p, q ∈ [0,∞]. In this case, symmetric [0,∞]-categories are given by maps
α : X ×X // [0,∞] such that

• α(x, x) = 0,

• α(x, y) = α(y, x),

• α(x, z) ⩽ α(x, y) + α(y, z)

for all x, y, z ∈ X, and they become (classical) metric spaces if, moreover,

α(x, y) <∞ and x = y ⇐⇒ α(x, y) = 0

for all x, y ∈ X.

(2) Every frame Ω = (Ω,∧,⊤) is a commutative and divisible quantale.

(3) Every complete BL-algebra [12] is a commutative and divisible quantale. In particu-
lar, the unit interval [0, 1] equipped with a continuous t-norm [23] is a commutative
and divisible quantale, and so is every complete MV-algebra [6].

(4) The unit interval [0, 1] equipped with the nilpotent minimum t-norm [23] is a com-
mutative, integral and non-divisible quantale.

(5) Let Sup[0, 1] denote the set of sup-preserving maps on the unit interval [0, 1]. Then

Sup[0, 1] = (Sup[0, 1], ◦, 1[0,1])

is a non-commutative, non-integral and involutive quantale [8], whose multiplication
is given by the composition ◦ of maps, and the unit is given by the identity map
1[0,1] on [0, 1]. An involution on Sup[0, 1] is given by

f ◦ : [0, 1] // [0, 1], f ◦(x) = 1− f ⋆(1− x)

1In order to eliminate ambiguity, we make the convention that all the symbols (e.g., ⩽, ∨, max, sup,
etc.) connecting (extended) real numbers always refer to the standard order on [0,∞], although the
quantale [0,∞] is equipped with the reverse order “⩾” of (extended) real numbers.
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for all f ∈ Sup[0, 1], where f ⋆ : [0, 1] // [0, 1] is the right adjoint of f . Furthermore,
it is straightforward to verify that

f ⩽ 1[0,1] ⇐⇒ f ◦ ⩽ 1[0,1]

for all f ∈ Sup[0, 1], and consequently,

Sup[0, 1]⩽1[0,1] = {f ∈ Sup[0, 1] | f ⩽ 1[0,1]}

is a subquantale of Sup[0, 1] that is non-commutative, non-divisible, integral and
involutive.

Since integral and involutive quantales are precisely integral and involutive quantaloids
with only one object, our results in Sections 3–5 generalize those in [20, 22]. In particular,
by setting Q = [0,∞], our Theorems 3.6 and 4.5 are reduced to Theorems 1.1 and 1.2
(by the aid of Remarks 3.3 and 4.1), respectively, which characterize injective objects and
injective hulls in the category Met of (classical) metric spaces and non-expansive maps.
Moreover, as we point out in Remark 5.6, our Theorem 5.4 generalizes and refines the
existing characterization of essential embeddings of metric spaces.

6.2. Remark. Since the implication in the quantale [0,∞] is given by (6.ii), while apply-
ing (4.i) and Remark 4.1 to the case of Q = [0,∞], in Theorem 1.2 it seems that T(X,α)
should consist of maps µ : X // [0,∞] satisfying

µ(x) = max{0, sup
y∈X

(α(x, y)− µ(y))}

for all x ∈ X, and
σ(µ, λ) = max{0, sup

x∈X
(µ(x)− λ(x))}

for all µ, λ ∈ T(X,α). Indeed, it is straightforward to verify that

µ(x) = sup
y∈X

(α(x, y)− µ(y)) ⇐⇒ µ(x) = max{0, sup
y∈X

(α(x, y)− µ(y))}

for every map µ : X // [0,∞] and x ∈ X, and

sup
x∈X

(µ(x)− λ(x)) = sup
x∈X

(λ(x)− µ(x)) ⩾ 0

for all µ, λ ∈ T(X,α). So, Theorem 1.2 is indeed a special case of our Theorem 4.5.

In fact, the potential applications of our results for a general (small, integral and
involutive) quantaloid are far beyond the one-object case. It is well known that Q gives
rise to a quantaloid DQ of diagonals of Q [18, 30, 38], which consists of the following data:

• objects of DQ are elements p, q, r, . . . of Q;
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• for p, q ∈ Q, a morphism u : p // q in DQ, called a diagonal from p to q, is an
element u ∈ Q with

(u / p)⊗ p = u = q ⊗ (q \ u); (6.iii)

• for diagonals u : p // q, v : q // r, the composition v ◦ u : p // r is given by

v ◦ u = (v / q)⊗ q ⊗ (q \ u) = (v / q)⊗ u = v ⊗ (q \ u); (6.iv)

• q : q // q is the identity diagonal on q.

Since Q is integral, Equation (6.iii) necessarily forces u ⩽ p ∧ q for all morphisms
u : p // q in DQ, which guarantees the integrality of DQ. In particular:

• If Q is a divisible quantale, then u satisfies (6.iii) if, and only if, u ⩽ p ∧ q.

• If Q = Ω is a frame, then the composition (6.iv) becomes

v ◦ u = v ∧ u (6.v)

for all diagonals u : p // q, v : q // r [41].

Note also that u : p // q is a diagonal if, and only if, u◦ : q◦ // p◦ is a diagonal.
Hence, the full subquantaloid DQ◦ of DQ given by

obDQ◦ := {q ∈ Q | q◦ = q}

is a small, integral and involutive quantaloid, with the involution lifted from Q. In par-
ticular, we have

DQ◦ = DQ

if Q is commutative.

6.3. Example. A symmetric DQ◦-category is exactly a Q-set in the sense of Höhle–
Kubiak (see [18, Definition 2.1]), which may be described as a set X equipped with a map
α : X ×X // Q such that such that

(S1) α(x, y) ⩽ α(x, x) ∧ α(y, y),

(S2) α(x, y) = α(y, x)◦,

(S3) α(x, y) = (α(x, y) / α(x, x))⊗ α(x, x),

(S4) (α(y, z) / α(y, y))⊗ α(x, y) ⩽ α(x, z)

for all x, y, z ∈ X, where the type map |-| : X // Q is given by

|x| = α(x, x)

for all x ∈ X; for details we refer to [18, Proposition 6.3] and [25, Theorem 4.5]. Note
that (S1) is actually subsumed by (S3) since our Q is integral, and (S1) is equivalent to
(S3) when Q is divisible. In particular:
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(1) If Q is a commutative and divisible quantale, then a Q-set (X,α) is given by a map
α : X ×X // Q such that

• α(x, y) ⩽ α(x, x) ∧ α(y, y),
• α(x, y) = α(y, x),

• α(y, z)⊗ (α(y, y) → α(x, y)) ⩽ α(x, z)

for all x, y, z ∈ X.

(2) If [0,∞] is the Lawvere quantale, then a [0,∞]-set (X,α) is given by a map α :
X ×X // [0,∞] such that

• α(x, x) ∨ α(y, y) ⩽ α(x, y),

• α(x, y) = α(y, x),

• α(x, z) ⩽ α(x, y)− α(y, y) + α(y, z)

for all x, y, z ∈ X; that is, a (slightly generalized) partial metric space [28, 5, 18,
30, 38, 17]. We remind the readers that the notion of “partial metric” originally
introduced by Matthews [28] additionally requires α to satisfy

α(x, y) <∞ and x = y ⇐⇒ α(x, x) = α(y, y) = α(x, y)

for all x, y ∈ X.

(3) If Ω is a frame, then an Ω-set [10, 4] (X,α) is given by a map α : X ×X //Ω such
that

• α(x, y) = α(y, x),

• α(y, z) ∧ α(x, y) ⩽ α(x, z)

for all x, y, z ∈ X.

Therefore, for every integral and involutive quantale Q, our results of injective objects,
injective hulls and essential embeddings in Q-SymCat can be seamlessly applied to the
category of Q-sets, giving rise to a theory of injective Q-sets. In the rest of this section,
we derive injective partial metric spaces as an example, where we consider the category

ParMet := D[0,∞]-SymCat

of (slightly generalized) partial metric spaces (as defined in Example 6.3(2)) and non-
expansive maps (i.e., D[0,∞]-functors).

Let (X,α) be a partial metric space. By Remark 3.3, Definition 3.1 may be formulated
in the context of partial metric spaces as:
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6.4. Definition. A partial metric space (X,α) is hyperconvex if, for every map µ :
X // [r,∞] (r ∈ [0,∞]) satisfying

α(x, x) ⩽ µ(x) and α(x, y) ⩽ µ(x)− r + µ(y)

for all x, y ∈ X, there exists z ∈ X such that

α(x, z) ⩽ µ(x)

for all x ∈ X.

6.5. Remark. Let us restate Definition 6.4 in a geometric way. A partial metric space
(X,α) is hyperconvex if, for every r ∈ [0,∞] and every family {(xj, rj)}j∈J of pairs with
xj ∈ X and rj ∈ [r,∞] satisfying

α(xj, xj) ⩽ rj and α(xj, xk) ⩽ rj − r + rk

for all j, k ∈ J , there exists z ∈ X such that

α(xj, z) ⩽ rj

for all j ∈ J . Let us elaborate this description as follows:

• Each pair (xj, rj) may be viewed as a closed ball B(xj, rj) of center xj and radius
rj. Since, as a partial metric space, the distance α(xj, xj) of xj to itself may not be
zero, the inequality α(xj, xj) ⩽ rj says that the radius of the ball B(xj, rj) cannot
be less than the self-distance of its center.

• The requirement rj ∈ [r,∞] means that there is a closed ball B(xj, r) of fixed radius
r inside every ball B(xj, rj). Moreover, the inequality α(xj, xk) ⩽ rj−r+rk says that
any two balls B(xj, rj) and B(xk, rk) “strongly intersect”, which intuitively means
that the straight line connecting their centers has at least a segment of length r
lying inside the intersection of B(xj, rj) and B(xk, rk).

• The existence of z ∈ X such that α(xj, z) ⩽ rj for all j ∈ J means that the
intersection

⋂
j∈J

B(xj, r) of all balls is non-empty.

As a special case of Theorem 3.6, hyperconvex partial metric spaces are precisely
injective partial metric spaces:

6.6. Corollary. Let (X,α) be a partial metric space. Then the following statements
are equivalent:

(i) (X,α) is hyperconvex.

(ii) (X,α) is an absolute retract in ParMet.
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(iii) (X,α) is an injective object in ParMet.

Now let us define the tight span (T(X,α), σ) of a partial metric space (X,α). As a
preparation, we point out that implications in the quantaloid D[0,∞] [40] are given by

w ↙ u = q ∨ r ∨ (w + q − u) and v ↘ w = p ∨ q ∨ (w + q − v)

for all u : p // q, v : q // r, w : p // r in D[0,∞]. Hence, it follows from Remark 4.1
that T(X,α) consists of maps µ : X // [r,∞] (r ∈ [0,∞]) satisfying

α(x, x) ⩽ µ(x) = r ∨ α(x, x) ∨ sup
y∈Y

(α(x, y) + r − µ(y))

for all x ∈ X. The partial metric σ on T(X,α) is given by

σ(µ, λ) = r ∨ s ∨ sup
x∈X

(λ(x) + r − µ(x))

for all µ : X // [r,∞], λ : X // [s,∞] in T(X,α). As an immediate consequence of
Theorem 4.5:

6.7. Corollary. The tight span (T(X,α), σ) is the injective hull of a partial metric
space (X,α) in ParMet.

Finally, for the essentiality of isometric maps (i.e., fully faithful D[0,∞]-functors)
between partial metric spaces, we translate Theorem 5.4 to the following:

6.8. Corollary. Let f : (X,α) // (Y, β) be an isometric map between partial metric
spaces. Then f is essential in ParMet if, and only if, f is dense in the sense that

β(y, y′) = β(y, y) ∨ β(y′, y′) ∨ sup
x∈X

(β(fx, y′) + β(y, y)− β(fx, y))

for all y, y′ ∈ Y .
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353, 2018.
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