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1 Introduction

A distributor [3] ϕ : X //◦ Y between categories enriched in a commutative quantale [15,
9,22,8]

V = (V,⊗,k)

may be described as a V-bifunctor ϕ : Xop ⊗ Y //V, and it induces three pairs of adjoint
V-functors between the (co)presheaf V-categories of X and Y :

(1) the Isbell adjunction [25] ϕ↑ ⊣ ϕ↓ : (VY )op //VXop
,

(2) the Kan adjunctions [25,24] ϕ∗ ⊣ ϕ∗ : VXop
//VY op

and ϕ† ⊣ ϕ† : (VX )op // (VY )op.

In this paper we demonstrate that every two-variable adjunction [7,26] between V-
categories gives rise to (generalized) Isbell adjunctions and Kan adjunctions, and in fact

This is a post-peer-review, pre-copyedit version of an article published in Applied Categorical Structures. The
final authenticated version is available online at: https://doi.org/10.1007/s10485-021-09654-w.

L. Shen�
School of Mathematics, Sichuan University, Chengdu 610064, China
E-mail: shenlili@scu.edu.cn

X. Tang
School of Mathematics, Sichuan University, Chengdu 610064, China
E-mail: tang.xiaoye@qq.com

https://doi.org/10.1007/s10485-021-09654-w


2 Lili Shen, Xiaoye Tang

provides a unified framework for these notions. Explicitly, for every two-variable adjunc-
tion (X ,Y,Z,⊛,↙,↘) between V-categories (Definition 3.3), a V-bifunctor

ϕ : Aop ⊗ B //Z

induces an Isbell adjunction

ϕ↑ ⊣ ϕ
↓ : (XB)op //Y Aop

between the V-categories of V-functors (Proposition 5.1). As every two-variable adjunction
is associated with several others (Lemma 5.2), Isbell adjunctions constructed upon suitable
two-variable adjunctions are precisely Kan adjunctions

ψ
∗ ⊣ ψ∗ : ZAop

//XBop
and ζ† ⊣ ζ

† : (Y A)op // (ZB)op

induced by V-bifunctors

ψ : Aop ⊗ B //Y and ζ : Aop ⊗ B //X ,

respectively (Proposition 5.3). As revealed in Subsection 7.1, all these adjunctions are re-
duced to the ones described in [25,24] when X = Y = Z = V, which are now unified in the
general framework of two-variable adjunction.

The main results of this paper are concerned about the representation theorems for fixed
points of Isbell adjunctions and Kan adjunctions, whose prototypes can be traced in the fields
of formal concept analysis (FCA) [6,4] and rough set theory (RST) [18,19,29]. Explicitly,
if (X ,Y,Z,⊛,↙,↘) is a two-variable adjunction between complete V-categories, then fixed
points of ϕ↑ ⊣ ϕ↓, ψ∗ ⊣ ψ∗ and ζ† ⊣ ζ † constitute complete V-categories

Mϕ, Kψ and K†
ζ ,

respectively, which provide a (very general) categorical interpretation of the notion of con-
cept lattice in FCA and RST:

(1) If X = Y = Z = V, then Mϕ , Kψ and K†ζ are concept lattices valued in V [1,2,14,25,
24,11]; see Subsection 7.1.

(2) If V = 2, the two-element Boolean algebra, then Mϕ , Kψ and K†ζ are multi-adjoint
concept lattices [17,16,12]; see Subsection 7.2.

In particular, the representation theorems for Mϕ , Kψ and K†ζ in the above special cases
have been established in the cited references. In our general setting, the desired representa-
tion theorems are presented as Theorem 6.2, Corollaries 6.6 and 6.7, which precisely charac-
terize V-categories that are equivalent to Mϕ , Kψ and K†ζ , respectively. It is worth pointing
out that Theorem 6.2 is not a straightforward generalization of [25, Theorem 4.16] or [11,
Corollary 7.9] for the case of X = Y = Z = V, since the absence of the Yoneda embedding
in general V-categories of V-functors forces us to develop new techniques to complete the
proof. The key tools are the V-bifunctors

ι : A ⊗ X //XAop
and ι

† : A ⊗ Xop // (XA)op

constructed for any V-category A and complete V-category X , which extend the notion of
formal ball in V-categories (Remark 4.4) and satisfy a generalized version of the Yoneda
lemma (Propositions 4.7 and 4.8).
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2 V-categories

Throughout, let
V = (V,⊗,k)

denote a commutative quantale [22]; that is, (V,⊗,k) is a commutative monoid with the
underlying set V being a complete lattice, such that

x ⊗
(∨

i∈I

yi

)
=

∨
i∈I

x ⊗ yi

for all x,yi ∈ V (i ∈ I). The right adjoint induced by the multiplication, denoted by →,

(x ⊗−) ⊣ (x →−) : V //V,

satisfies
x ⊗ y ⩽ z ⇐⇒ x ⩽ y → z

for all x,y,z ∈ V.
A V-category [15,9] consists of a set X and a map α : X ×X //V satisfying

k ⩽ α(x,x) and α(x,y)⊗ α(y,z)⩽ α(x,z)

for all x,y,z ∈ X . For simplicity, we abbreviate the pair (X ,α) to X and write X(x,y) instead
of α(x,y) if no confusion arises.

Every V-category X is equipped with an underlying (pre)order given by

x ⩽ y ⇐⇒ k ⩽ X(x,y)

for all x,y∈X . We write x∼= y iff x⩽ y and y⩽ x. A V-category X is separated (also skeletal)
if x = y whenever x ∼= y in X .

A map f : X //Y between V-categories is a V-functor if

X(x,y)⩽ Y ( f x, f y)

for all x,y ∈ X . With the order of V-functors given by

f ⩽ g : X //Y ⇐⇒ ∀x ∈ X : f x ⩽ gx ⇐⇒ ∀x ∈ X : k ⩽ Y ( f x,gx),

we obtain a 2-category
V-Cat

of V-categories and V-functors.
Given a V-functor f : X //Y , we say that:

– f is fully faithful, if X(x,y) = Y ( f x, f y) for all x,y ∈ X .
– f is essentially surjective, if for each y ∈ Y there exists x ∈ X such that y ∼= f x.
– f is an equivalence (resp. isomorphism) of V-categories, if there exists a V-functor

g : Y //X with g f ∼= 1X (resp. g f = 1X ) and f g ∼= 1Y (resp. f g = 1Y ), where 1X and 1Y
refer to the identity maps on X and Y , respectively. In this case, X and Y are equivalent
(resp. isomorphic) V-categories, and denoted by X ≃ Y (resp. X ∼= Y ).

Assuming the axiom of choice, the following characterization of equivalences of V-
categories is well known:
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Proposition 2.1. [9] A V-functor f : X //Y is an equivalence of V-categories if, and only
if, f is fully faithful and essentially surjective.

Example 2.2. Some basic examples of V-categories are listed below:

(1) V itself is a separated V-category with

V(x,y) = x → y

for all x,y ∈ V.
(2) Let [0,∞] = ([0,∞],⩾,+,0) denote Lawvere’s quantale. Then [0,∞]-categories are (gen-

eralized) metric spaces [15], and [0,∞]-functors are non-expansive maps.
(3) Every V-category X has a dual Xop, which has the same underlying set as X , and

Xop(x,y) = X(y,x)

for all x,y ∈ X .
(4) The product of V-categories X , Y , denoted by X ×Y , has the cartesian product of their

underlying sets as its set of objects, and

(X ×Y )((x,y),(x′,y′)) = X(x,x′)∧Y (y,y′)

for all x,x′ ∈ X , y,y′ ∈ Y .
(5) The tensor product of V-categories X , Y , denoted by X ⊗ Y , has the cartesian product

of their underlying sets as its set of objects, and

(X ⊗ Y )((x,y),(x′,y′)) = X(x,x′)⊗ Y (y,y′)

for all x,x′ ∈ X , y,y′ ∈ Y .
(6) Given V-categories X , Y , we denote by Y X the V-category of V-functors from X to Y ,

with
Y X ( f ,g) =

∧
x∈X

Y ( f x,gx) (2.i)

for all f ,g ∈ Y X . In particular, VXop
and (VX )op are called the presheaf and copresheaf

V-categories of X , respectively, with

VXop
(µ,µ ′) =

∧
x∈X

µx → µ
′x and (VX )op(λ ,λ ′) =

∧
x∈X

λ
′x → λx

for all µ,µ ′ ∈ VXop
, λ ,λ ′ ∈ VX .

Remark 2.3. The dual of a V-category given in Example 2.2(3) may be expanded to an
isomorphism

(−)op : V-Cat // (V-Cat)co

of 2-categories, where “co” refers to the dualization of 2-cells. Explicitly, the dual of a V-
functor f : X //Y , denoted by f op : Xop //Y op, is the same map as f on objects, but
( f ′)op ⩽ f op whenever f ⩽ f ′ : X //Y . Moreover, it is easy to see that

(Y X )op ∼= (Y op)Xop
and (X ⊗ Y )op = Xop ⊗ Y op (2.ii)

for all V-categories X , Y .
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3 Two-variable adjunctions in V-categories

Recall that a pair of V-functors, f : X //Y and g : Y //X , form an adjunction in V-Cat,
denoted by f ⊣ g, if

1X ⩽ g f and f g ⩽ 1Y ;

or equivalently, if
Y ( f x,y) = X(x,gy) (3.i)

for all x ∈ X , y ∈ Y . It is well known that the V-functoriality of f , g is implied by (3.i); that
is, maps f , g satisfying (3.i) are necessarily V-functors (see, e.g., [13, Theorem 2.10]). In
this case, f is called a left adjoint of g, and g a right adjoint of f .

The aim of this section is to introduce the notion of two-variable adjunction in the
context of V-categories, which appears in [7,21] for ordinary categories and in [26] for
enriched categories. First, it is straightforward to check the following lemma, where a V-
bifunctor simply means a V-functor X ⊗ Y //Z:

Lemma 3.1. For V-categories X, Y , Z, a map ϕ : X ⊗ Y //Z is a V-bifunctor if, and only
if,

(1) ϕ(x,−) : Y //Z is a V-functor for all x ∈ X, and
(2) ϕ(−,y) : X //Z is a V-functor for all y ∈ Y .

Suppose that X , Y , Z are V-categories and ⊛ : X ⊗ Y //Z is a V-bifunctor. If the V-
functors

−⊛ y : X //Z and x ⊛− : Y //Z

admit right adjoints in V-Cat for any y ∈ Y , x ∈ X , say,

(−⊛ y) ⊣ (−↙ y) : Z //X and (x ⊛−) ⊣ (x ↘−) : Z //Y, (3.ii)

then
Z(x ⊛ y,z) = X(x,z ↙ y) = Y (y,x ↘ z) (3.iii)

for all x ∈ X , y ∈ Y , z ∈ Z.

Lemma 3.2. ↙ : Z ⊗ Y op //X and ↘ : Xop ⊗ Z //Y defined by (3.ii) (or equivalently,
by (3.iii)) are V-bifunctors.

Proof. We check the V-bifunctoriality of ↙ as an example. By Lemma 3.1, it suffices to
show that for each z ∈ Z,

z ↙− : Y op //X

is a V-functor, which follows from

Y (y,y′)⩽ Z((z ↙ y′)⊛ y,(z ↙ y′)⊛ y′)

⩽ Z((z ↙ y′)⊛ y,(z ↙ y′)⊛ y′)⊗X(z ↙ y′,z ↙ y′)

= Z((z ↙ y′)⊛ y,(z ↙ y′)⊛ y′)⊗ Z((z ↙ y′)⊛ y′,z)

⩽ Z((z ↙ y′)⊛ y,z)

= X(z ↙ y′,z ↙ y),

for all y,y′ ∈ Y .
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Definition 3.3. [26] Let X , Y , Z be V-categories. A two-variable adjunction in V-Cat con-
sists of V-bifunctors

⊛ : X ⊗ Y //Z, ↙ : Z ⊗ Y op //X , ↘ : Xop ⊗ Z //Y

such that
Z(x ⊛ y,z) = X(x,z ↙ y) = Y (y,x ↘ z)

for all x ∈ X , y ∈ Y , z ∈ Z.

For each V-category X , the Yoneda embedding (resp. co-Yoneda embedding) refers to
the V-functor

y : X //VXop
, x 7→ X(−,x) (resp. y† : X // (VX )op, x 7→ X(x,−)).

The following Yoneda lemma is well known, which in particular implies that y and y† are
both fully faithful; however, y and y† are injective maps only if X is a separated V-category.

Lemma 3.4 (Yoneda). [9] For any x ∈ X, µ ∈ VXop
, λ ∈ VX , it holds that

VXop
(yx,µ) = µx and (VX )op(λ ,y†x) = λx. (3.iv)

The supremum (resp. infimum) of µ ∈ VXop
(resp. λ ∈ VX ), when it exists, is an object

sup µ ∈ X (resp. infλ ∈ X) satisfying

X(sup µ,x) = VXop
(µ,yx) =

∧
y∈X

µy → X(y,x) (3.v)(
resp. X(x, infλ ) = (VX )op(y†x,λ ) =

∧
y∈X

λy → X(x,y)
)
. (3.vi)

for all x ∈ X . A V-category X is cocomplete if every µ ∈ VXop
admits a supremum, or

equivalently, if y : X //VXop
has a left adjoint, given by sup: VXop

//X . It is well known
that X is cocomplete if and only if X is complete [27], where the completeness of X is
defined as y† : X // (VX )op admitting a right adjoint inf : (VX )op //X .

Every V-functor f : X //Y induces a V-functor f→ : VX //VY given by

( f→µ)y =
∨
x∈X

Y ( f x,y)⊗ µx, (3.vii)

and thus gives rise to V-functors

( f op)→ : VXop
//VY op

and ( f→)op : (VX )op // (VY )op

between (co)presheaf V-categories of X , Y .

Proposition 3.5. [27] Let f : X //Y be a V-functor between complete V-categories. Then
f is a left (resp. right) adjoint in V-Cat if, and only if, f preserves suprema (resp. infima) in
the sense that

f supX = supY ( f op)→ (resp. f infX = infY ( f→)op).

Therefore, if X , Y , Z are complete V-categories, then a two-variable adjunction

(X ,Y,Z,⊛,↙,↘)

in V-Cat is completely determined by a V-bifunctor

⊛ : X ⊗ Y //Z

that preserves suprema on both sides.
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4 Tensors and cotensors in V-categories

In a V-category X , the tensor (resp. cotensor) [9] of v ∈ V and x ∈ X , when it exists, is an
object v⋆ x ∈ X (resp. v ↣ x ∈ X) such that

X(v⋆ x,y) = v → X(x,y) (resp. X(y,v ↣ x) = v → X(y,x)) (4.i)

for all y ∈ X . X is tensored (resp. cotensored) if v⋆x (resp. v ↣ x) exists for all v ∈V, x ∈ X .
A V-category X is order-complete if the underlying ordered set of X is complete.

Proposition 4.1. [28] A V-category X is complete if, and only if, X is tensored, cotensored
and order-complete.

Proposition 4.2. [28] Let f : X //Y be a V-functor between complete V-categories. Then
f is a left (resp. right) adjoint in V-Cat if, and only if, f is a left (resp. right) adjoint between
the underlying ordered sets of X, Y , and preserves tensors (resp. cotensors) in the sense that
f (v⋆ x) = v⋆ f x (resp. f (v ↣ x) = v ↣ f x) for all v ∈ V, x ∈ X.

In fact, in a complete V-category X , (4.i) indicates that there are adjoint V-functors

(−⋆ x) ⊣ X(x,−) : X //V and X(−,x) ⊣ (−↣ x) : Vop //X (4.ii)

for all x ∈ X . Then it follows immediately from Proposition 4.2 that

X
(

x,
∧
i∈I

yi

)
=

∧
i∈I

X(x,yi) and X
(∨

i∈I

yi,x
)
=

∧
i∈I

X(yi,x) (4.iii)

for all x,yi ∈ X (i ∈ I), where
∧
i∈I

yi and
∨
i∈I

yi are calculated in the underlying order of X .

Let X be a complete V-category. For each V-category A, we define

ι(a,x) : Aop //X , ι(a,x)b = A(b,a)⋆ x, (4.iv)

ι
†(a,x) : A //X , ι

†(a,x)b = A(a,b)⋆ x (4.v)

for all a ∈ A, x ∈ X .

Lemma 4.3. ι(a,x) : Aop //X and ι†(a,x) : A //X are both V-functors.

Proof. The V-functoriality of ι(a,x) follows from

A(b,c)⩽ A(c,a)→ A(b,a)

⩽
∧
y∈Y

(A(b,a)→ X(x,y))→ (A(c,a)→ X(x,y))

=
∧
y∈Y

X(A(b,a)⋆ x,y)→ X(A(c,a)⋆ x,y)

= X(A(c,a)⋆ x, A(b,a)⋆ x)

= X(ι(a,x)c, ι(a,x)b)

for all b,c ∈ A, and the V-functoriality of ι†(a,x) is obtained dually.
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Remark 4.4. The V-functor ι(a,x) : Aop // X extends the notion of formal ball in V-
categories [10], which originates from (generalized) metric spaces (i.e., when V = [0,∞])
[5,23]. In fact, if X = V, then tensors in V are given by

v⋆ r = v ⊗ r

for all v,r ∈ V. Consequently, for any a ∈ A and r ∈ V, ι(a,r) : Aop //V is precisely a
formal ball of center a and radius r in the sense of [10, Definition 5.1].

A V-functor f : X //Y is dense (resp. codense) if, for every y∈Y , there exists µ ∈VXop

(resp. λ ∈ VX ) such that

y = sup( f op)→µ (resp. y = inf( f→)op
λ ).

The following properties of (co)dense V-functors are useful later:

Lemma 4.5. (cf. [9, Theorem 5.1] and [11, Proposition 4.12]) A V-functor f : X //Y is
dense (resp. codense) if, and only if,

Y (y,y′) =
∧
x∈X

Y ( f x,y)→ Y ( f x,y′)
(

resp. Y (y,y′) =
∧
x∈X

Y (y′, f x)→ Y (y, f x)
)

for all y,y′ ∈ X.

Lemma 4.6. (cf. [9, Proposition 5.9] and [11, Corollary 4.13])

(1) If a V-functor f : X //Y is essentially surjective, then f is both dense and codense.
(2) If V-functors f : X //Y and g : Y //Z are both dense (resp. codense), and g is a left

(resp. right) adjoint in V-Cat, then g f : X //Z is dense (resp. codense).

Given a V-category A and a complete V-category X , Lemma 4.3 actually gives rise to
well-defined maps

ι : A ⊗ X //XAop
and ι

† : A ⊗ Xop // (XA)op,

and moreover:

Proposition 4.7. ι : A ⊗ X //XAop
is a dense V-bifunctor, and ι† : A ⊗ Xop // (XA)op is

a codense V-bifunctor.

Proof. We only prove the claim for ι , as the claim for ι† can be obtained dually.
First, ι is a V-bifunctor. This is because

(A ⊗ X)((a,x),(a′,x′)) = A(a,a′)⊗ X(x,x′)

⩽ (A(b,a)→ A(b,a′))⊗ X(x,x′)

⩽
∧
b∈A

∧
y∈Y

(A(b,a′)→ X(x′,y))→ (A(b,a)→ X(x,y))

=
∧
b∈A

∧
y∈Y

X(A(b,a′)⋆ x′,y)→ X(A(b,a)⋆ x,y)

=
∧
b∈A

X(A(b,a)⋆ x, A(b,a′)⋆ x′)

= XAop
(ι(a,x), ι(a′,x′))

for all a,a′ ∈ A, x,x′ ∈ X .
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Second, ι is dense. By Lemma 4.5 it suffices to show that

XAop
(µ,µ ′) =

∧
a∈A

∧
x∈X

XAop
(ι(a,x),µ)→ XAop

(ι(a,x),µ ′)

for all µ,µ ′ ∈ XAop
. To this end, note that for any c ∈ A, the V-functoriality of µ : Aop //X

implies that
A(b,c)⩽ X(µc,µb)

for all b ∈ A, and consequently

k ⩽
∧
b∈A

A(b,c)→ X(µc,µb) =
∧
b∈A

X(A(b,c)⋆µc,µb) = XAop
(ι(c,µc),µ).

It follows that∧
a∈A

∧
x∈X

XAop
(ι(a,x),µ)→ XAop

(ι(a,x),µ ′)

⩽ XAop
(ι(c,µc),µ)→ XAop

(ι(c,µc),µ ′)⩽ XAop
(ι(c,µc),µ ′)

⩽ X(ι(c,µc)c,µ ′c) = X(A(c,c)⋆µc,µ ′c) = A(c,c)→ X(µc,µ ′c)⩽ X(µc,µ ′c).

Hence ∧
a∈A

∧
x∈X

XAop
(ι(a,x),µ)→ XAop

(ι(a,x),µ ′)⩽
∧
c∈A

X(µc,µ ′c) = XAop
(µ,µ ′),

which is in fact an equation since the reverse inequality is trivial.

Proposition 4.8. Given a V-category A and a complete V-category X, it holds that

XAop
(ι(a,x),µ) = X(x,µa) and (XA)op(λ , ι†(a,x)) = X(x,λa) (4.vi)

for all a ∈ A, x ∈ X, µ ∈ XAop
, λ ∈ XA.

Proof. The identity for ι follows from

XAop
(ι(a,x),µ) =

∧
b∈A

X(A(b,a)⋆ x,µb) =
∧
b∈A

A(b,a)→ X(x,µb) = X(x,µa)

for all a ∈ A, x ∈ X , µ ∈ XAop
, and the identity for ι† follows dually.

Remark 4.9. Proposition 4.8 may be viewed as a generalized version of the Yoneda lemma.
In fact, if X = V, then for each V-category A, by setting

x = k

in (4.iv) and (4.v) we obtain the Yoneda embedding and the co-Yoneda embedding, i.e.,

ι(a,k) = yAa = A(−,a) and ι
†(a,k) = y†

Aa = A(a,−)

for all a ∈ A, and (4.vi) becomes exactly (3.iv) in Lemma 3.4.
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5 Isbell adjunctions and Kan adjunctions

Let
(X ,Y,Z,⊛,↙,↘)

be a two-variable adjunction in V-Cat. For each V-bifunctor

ϕ : Aop ⊗ B //Z,

we define

ϕ↑ : Y Aop
// (XB)op, (ϕ↑µ)b =

∧
a∈A

ϕ(a,b)↙ µa, (5.i)

ϕ
↓ : (XB)op //Y Aop

, (ϕ↓
λ )a =

∧
b∈B

λb ↘ ϕ(a,b). (5.ii)

Proposition 5.1. Let ϕ : Aop ⊗ B //Z be a V-bifunctor. Then

ϕ↑ ⊣ ϕ
↓ : (XB)op //Y Aop

in V-Cat.

Proof. First, ϕ↑ and ϕ↓ are well-defined maps. Given µ ∈ Y Aop
, the V-functoriality of

ϕ↑µ : B //X follows from

B(b,b′)⩽
∧
a∈A

Z(ϕ(a,b),ϕ(a,b′)) (Lemma 3.1)

⩽
∧
a∈A

X(ϕ(a,b)↙ µa, ϕ(a,b′)↙ µa) (Lemma 3.2)

⩽
∧
a∈A

X
( ∧

a′∈A

ϕ(a′,b)↙ µa′, ϕ(a,b′)↙ µa
)

(Equations (4.iii))

= X
( ∧

a′∈A

ϕ(a′,b)↙ µa′,
∧
a∈A

ϕ(a,b′)↙ µa
)

(Equations (4.iii))

= X((ϕ↑µ)b,(ϕ↑µ)b′) (Equation (5.i))

for all b,b′ ∈ B; and similarly, ϕ↓λ : Aop //Y is a V-functor whenever λ ∈ XB.
Second, ϕ↑ and ϕ↓ are V-functors and ϕ↑ ⊣ ϕ↓ in V-Cat. Indeed,

(XB)op(ϕ↑µ,λ ) =
∧
b∈B

X(λb,(ϕ↑µ)b)

=
∧
b∈B

X
(

λb,
∧
a∈A

ϕ(a,b)↙ µa
)

(Equation (5.i))

=
∧
b∈B

∧
a∈A

X(λb,ϕ(a,b)↙ µa) (Equations (4.iii))

=
∧
a∈A

∧
b∈B

Y (µa,λb ↘ ϕ(a,b)) (Definition 3.3)

=
∧
a∈A

Y
(

µa,
∧
b∈B

λb ↘ ϕ(a,b)
)

(Equations (4.iii))

=
∧
a∈A

Y (µa,(ϕ↓
λ )a) (Equation (5.ii))
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= Y Aop
(µ,ϕ↓

λ )

for all µ ∈ Y Aop
, λ ∈ XB, which completes the proof.

For each V-bifunctor ϕ : X ⊗Y //Z, let ϕ∂ : Y ⊗ X //Z denote the V-bifunctor given
by

ϕ
∂ (y,x) = ϕ(x,y)

for all x ∈ X , y ∈ Y .

Lemma 5.2. For V-bifunctors ⊛ : X ⊗Y //Z, ↙ : Z ⊗Y op //X, ↘ : Xop ⊗ Z //Y , the
following statements are equivalent:

(i) (X ,Y,Z,⊛,↙,↘) is a two-variable adjunction in V-Cat.
(ii) (X ,Zop,Y op,↘,↙∂ ,⊛) is a two-variable adjunction in V-Cat.

(iii) (Zop,Y,Xop,↙,⊛,↘∂ ) is a two-variable adjunction in V-Cat.

Proof. This is an immediate consequence of

Z(x ⊛ y,z) = X(x,z ↙ y) = Y (y,x ↘ z)

⇐⇒ Y op(x ↘ z,y) = X(x,y ↙∂ z) = Zop(z,x ⊛ y)

⇐⇒ Xop(z ↙ y,x) = Zop(z,x ⊛ y) = Y (y,z ↘∂ x)

for all x ∈ X , y ∈ Y , z ∈ Z.

Note that the duality of V-categories (cf. Remark 2.3) allows us to reformulate Proposi-
tion 5.1 as follows: the dual of each V-bifunctor

ϕ : Aop ⊗ B //Zop, i.e., ϕ
op : (Aop)op ⊗ Bop //Z,

induces an adjunction

(ϕop)↑ ⊣ (ϕop)↓ : (XBop
)op //Y (Aop)op

in V-Cat, given by (5.i) and (5.ii), which by duality corresponds to

((ϕop)↓)op ⊣ ((ϕop)↑)
op : (Y A)op //XBop

. (5.iii)

Applying (5.iii) to the two-variable adjunctions of Lemma 5.2(ii)(iii), we obtain that any
V-bifunctors

ψ : Aop ⊗ B //Y and ζ : Aop ⊗ B //X

give rise to adjunctions given in the following Proposition 5.3, where

ψ
∗ : XBop

//ZAop
, (ψ∗

λ )a =
∨
b∈B

λb ⊛ ψ(a,b), (5.iv)

ψ∗ : ZAop
//XBop

, (ψ∗µ)b =
∧
a∈A

µa ↙ ψ(a,b) (5.v)

and

ζ† : (ZB)op // (Y A)op, (ζ†λ )a =
∧
b∈B

ζ (a,b)↘ λb, (5.vi)

ζ
† : (Y A)op // (ZB)op, (ζ †

µ)b =
∨
a∈A

ζ (a,b)⊛ µa. (5.vii)
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Proposition 5.3. Let ψ : Aop ⊗ B //Y and ζ : Aop ⊗ B //X be V-bifunctors. Then

ψ
∗ ⊣ ψ∗ : ZAop

//XBop
and ζ† ⊣ ζ

† : (Y A)op // (ZB)op

in V-Cat.

As we will see in Subsection 7.1, adjunctions given by Propositions 5.1 and 5.3 general-
ize Isbell adjunctions and Kan adjunctions induced by V-distributors between V-categories,
respectively. Hence, following the terminologies of [25,24], adjunctions of the forms ϕ↑ ⊣
ϕ↓ and ψ∗ ⊣ ψ∗, ζ† ⊣ ζ † are called Isbell adjunctions and Kan adjunctions, respectively.

6 Representation theorems

In this section, we assume that X , Y , Z are complete V-categories, and

(X ,Y,Z,⊛,↙,↘)

is a two-variable adjunction in V-Cat.
Given a V-category A, a V-functor h : A //A is a V-closure operator if

1A ⩽ h and hh ∼= h.

In particular, each adjunction f ⊣ g : B //A in V-Cat induces a V-closure operator g f : A //A.
We denote by

Fix(h) := {a ∈ A | ha ∼= a}

the V-subcategory of A consisting of fixed points1 of h.

Proposition 6.1. [25] Let h : A //A be a V-closure operator. Then

(1) the inclusion V-functor Fix(h) �
�
//A is the right adjoint of the codomain restriction

h : A //Fix(h);
(2) Fix(h) is a complete V-category provided that A is complete.

If X is a complete V-category, then for any V-category A, it is easy to see that XA is
equipped with the pointwise tensors, cotensors and underlying joins inherited from X , and
thus XA is also a complete V-category by Proposition 4.1. Therefore, by Proposition 5.1,
every V-bifunctor

ϕ : Aop ⊗ B //Z

gives rise to a complete V-category

Mϕ := Fix(ϕ↓
ϕ↑) = {µ ∈ Y Aop | ϕ

↓
ϕ↑µ ∼= µ}

of the fixed points of the V-closure operator ϕ↓ϕ↑ : Y Aop
//Y Aop

induced by the Isbell
adjunction ϕ↑ ⊣ ϕ↓.

The following theorem is the main result of this paper, which characterizes those V-
categories that are equivalent to Mϕ:

1 Strictly speaking, “fixed point” should read “pseudo-fixed point” here, since a ∈ Fix(h) satisfies ha ∼= a
instead of ha = a.
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Theorem 6.2. Let ϕ : Aop ⊗ B //Z be a V-bifunctor. A V-category C is equivalent to Mϕ

if, and only if, C is complete and there exist a dense V-bifunctor α : A ⊗ Y //C and a
codense V-bifunctor β : B ⊗ Xop //C such that

C(α(a,y),β (b,x)) = Z(x ⊛ y,ϕ(a,b)) (6.i)

for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y .

Before proving this theorem, we present the following lemma as a preparation:

Lemma 6.3. For any a ∈ A, b ∈ B, x ∈ X, y ∈ Y , it holds that

(ϕ↑ιA,Y (a,y))b ∼= ϕ(a,b)↙ y and (ϕ↓
ι

†
B,X (b,x))a ∼= x ↘ ϕ(a,b).

Proof. The first isomorphism follows from

X(x′,(ϕ↑ιA,Y (a,y))b) = X
(

x′,
∧

a′∈A

ϕ(a′,b)↙ (A(a′,a)⋆ y)
)

(Equations (4.iv) and (5.i))

=
∧

a′∈A

X(x′,ϕ(a′,b)↙ (A(a′,a)⋆ y)) (Equations (4.iii))

=
∧

a′∈A

Y (A(a′,a)⋆ y, x′ ↘ ϕ(a′,b)) (Definition 3.3)

=
∧

a′∈A

A(a′,a)→ Y (y,x′ ↘ ϕ(a′,b)) (Equations (4.i))

= Y (y,x′ ↘ ϕ(a,b))

= X(x′,ϕ(a,b)↙ y) (Definition 3.3)

for all x′ ∈ X , where the penultimate equality holds since

A(a′,a)⩽ Z(ϕ(a,b),ϕ(a′,b))⩽ Y (x′ ↘ ϕ(a,b),x′ ↘ ϕ(a′,b))

by applying Lemmas 3.1 and 3.2 to ϕ : Aop ⊗ B //Z and ↘ : Xop ⊗ Z //Y . The second
isomorphism is obtained dually.

Proof of Theorem 6.2. Necessity. It suffices to prove the case C =Mϕ . We show that

α : A ⊗ Y //Mϕ and β : B ⊗ Xop //Mϕ

given by
α(a,y) = ϕ

↓
ϕ↑ιA,Y (a,y) and β (b,x) = ϕ

↓
ι

†
B,X (b,x)

are dense and codense, respectively, and satisfy (6.i).
First, the density of α and the codensity of β both follow from Lemma 4.6. Indeed, α

is the composition of the dense V-bifunctor ιA,Y : A ⊗ Y //Y Aop
(Proposition 4.7) and the

codomain restriction of the V-closure operator ϕ↓ϕ↑ : Y Aop
//Y Aop

(cf. Proposition 6.1),
while β is the composition of the codense V-bifunctor ι

†
B,X : B ⊗ Xop // (XB)op (Proposi-

tion 4.7) and the codomain restriction of the right adjoint V-functor ϕ↓ : (XB)op //Y Aop
.

Second, Equation (6.i) follows from

Mϕ(α(a,y),β (b,x)) = Y Aop
(ϕ↓

ϕ↑ιA,Y (a,y),ϕ↓
ι

†
B,X (b,x))

= (XB)op(ϕ↑ϕ
↓
ϕ↑ιA,Y (a,y), ι

†
B,X (b,x)) (ϕ↑ ⊣ ϕ

↓)
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= (XB)op(ϕ↑ιA,Y (a,y), ι
†
B,X (b,x)) (ϕ↑ ⊣ ϕ

↓)

= X(x,(ϕ↑ιA,Y (a,y))b) (Proposition 4.8)

= X(x,ϕ(a,b)↙ y) (Lemma 6.3)

= Z(x ⊛ y,ϕ(a,b)) (Definition 3.3)

for all a ∈ A, b ∈ B, x ∈ X , y ∈ Y .
Sufficiency. We show that

h : Mϕ //C, hµ =
∨
a∈A

α(a,µa)

is a fully faithful and essentially surjective V-functor, and thus an equivalence of V-categories
by Proposition 2.1.

First, h is a fully faithful V-functor. Note that

C(hµ,β (b,x)) = X(x,(ϕ↑µ)b) (6.ii)

for all µ ∈Mϕ , b ∈ B, x ∈ X , because

C(hµ,β (b,x)) =C
( ∨

a∈A

α(a,µa),β (b,x)
)

=
∧
a∈A

C(α(a,µa),β (b,x)) (Equations (4.iii))

=
∧
a∈A

Z(x ⊛ µa,ϕ(a,b)) (Equation (6.i))

=
∧
a∈A

X(x,ϕ(a,b)↙ µa) (Definition 3.3)

= X
(

x,
∧
a∈A

ϕ(a,b)↙ µa
)

(Equations (4.iii))

= X(x,(ϕ↑µ)b). (Equation (5.i))

It follows that

Mϕ(µ,µ ′) = Y Aop
(µ,ϕ↓

ϕ↑µ
′) (µ ′ ∈Mϕ)

= (XB)op(ϕ↑µ,ϕ↑µ
′) (ϕ↑ ⊣ ϕ

↓)

=
∧
b∈B

X((ϕ↑µ
′)b,(ϕ↑µ)b)

=
∧
b∈B

∧
x∈X

X(x,(ϕ↑µ
′)b)→ X(x,(ϕ↑µ)b)

=
∧
b∈B

∧
x∈X

C(hµ
′,β (b,x))→C(hµ,β (b,x)) (Equation (6.ii))

=C(hµ,hµ
′) (Lemma 4.5)

for all µ,µ ′ ∈Mϕ , where Lemma 4.5 is applied to the codense V-bifunctor β : B⊗Xop //C
in the last equality.

Second, h is essentially surjective. For any c ∈C, note that C(α(a,−),c) ∈ VY op
for all

a ∈ A. Thus it makes sense to define

µ : Aop //Y, µa = supYC(α(a,−),c),
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which is a V-functor because

A(a,a′)⩽
∧
y∈Y

C(α(a,y),α(a′,y)) (V-functoriality of α)

⩽
∧
y∈Y

C(α(a′,y),c)→C(α(a,y),c)

=VY op
(C(α(a′,−),c),C(α(a,−),c))

⩽ Y (µa′,µa) (V-functoriality of supY )

for all a,a′ ∈ A. We claim that
c ∼= hϕ

↓
ϕ↑µ.

Indeed,
C(c,β (b,x)) =C(hϕ

↓
ϕ↑µ,β (b,x)) (6.iii)

for all b ∈ B, x ∈ X , because the density of α : A ⊗ Y //C guarantees that

C(c,β (b,x)) =
∧
a∈A

∧
y∈Y

C(α(a,y),c)→C(α(a,y),β (b,x)) (Lemma 4.5)

=
∧
a∈A

∧
y∈Y

C(α(a,y),c)→ Z(x ⊛ y,ϕ(a,b)) (Equation (6.i))

=
∧
a∈A

∧
y∈Y

C(α(a,y),c)→ Y (y,x ↘ ϕ(a,b)) (Definition 3.3)

=
∧
a∈A

Y (µa,x ↘ ϕ(a,b)) (Equation (3.v))

=
∧
a∈A

X(x,ϕ(a,b)↙ µa) (Definition 3.3)

= X
(

x,
∧
a∈A

ϕ(a,b)↙ µa
)

(Equations (4.iii))

= X(x,(ϕ↑µ)b) (Equation (5.i))

= X(x,(ϕ↑ϕ
↓
ϕ↑µ)b) (ϕ↑ ⊣ ϕ

↓)

=C(hϕ
↓
ϕ↑µ,β (b,x)). (Equation (6.ii))

Hence, by the codensity of β : B ⊗ Xop //C,

C(c,c′) =
∧
b∈B

∧
x∈X

C(c′,β (b,x))→C(c,β (b,x)) (Lemma 4.5)

=
∧
b∈B

∧
x∈X

C(c′,β (b,x))→C(hϕ
↓
ϕ↑µ,β (b,x)) (Equation (6.iii))

=C(hϕ
↓
ϕ↑µ,c′) (Lemma 4.5)

for all c′ ∈C, which completes the proof.

Remark 6.4. The above proof for Theorem 6.2 is a direct one. Besides, an easier but indirect
approach to the sufficiency of the condition in Theorem 6.2 may be formulated by applying
the results of [11]. Explicitly, since we have dense V-functors α , ιA,Y and codense V-functors
β , ι

†
B,X satisfying

(XB)op(ϕ↑ιA,Y (a,y), ι
†
B,X (b,x)) = Z(x ⊛ y,ϕ(a,b)) =C(α(a,y),β (b,x))
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A ⊗ Y

Y Aop

ιA,Y
77

B ⊗ Xop

(XB)op
ι

†
B,Xgg

A ⊗ Y

C
α ++

B ⊗ Xop

C βss

Y Aop
(XB)op

ϕ↑
//
(XB)opY Aop

ϕ↓
oo ⊥

for all a ∈ A, b ∈ B, x ∈ X , y ∈ Y , it follows from [11, Theorem 5.1] that C is equivalent to
Mϕ .

Now, in order to derive representation theorems for the complete V-categories of fixed
points of Kan adjunctions given by Proposition 5.3, i.e.,

Kψ := Fix(ψ∗ψ
∗) = {λ ∈ XBop | ψ∗ψ

∗
λ ∼= λ},

K†
ζ := Fix(ζ †

ζ†) = {λ ∈ ZB | ζ
†
ζ†λ ∼= λ},

let us apply Theorem 6.2 to the adjunction (5.iii). Indeed, for any V-bifunctor ϕ : Aop ⊗
B //Zop, the V-category of fixed points of (5.iii) is precisely (Mϕop)op. By Theorem 6.2,
the dual of a complete V-category C is equivalent to Mϕop if, and only if, there exist a dense
V-bifunctor α : Aop ⊗ Y //Cop and a codense V-bifunctor β : Bop ⊗ Xop //Cop with

C(β (b,x),α(a,y)) =Cop(α(a,y),β (b,x)) = Z(x ⊛ y,ϕ(a,b))

for all a ∈ A, b ∈ B, x ∈ X , y ∈ Y . Therefore, by the duality of V-categories we have:

Corollary 6.5. Let ϕ : Aop ⊗ B //Zop be a V-bifunctor. A V-category C is equivalent to
(Mϕop)op if, and only if, C is complete and there exist a dense V-bifunctor β : B ⊗ X //C
and a codense V-bifunctor α : A ⊗ Y op //C such that

C(β (b,x),α(a,y)) = Z(x ⊛ y,ϕ(a,b))

for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y .

The representation theorems for Kψ and K†ζ are then obtained by applying Corollary
6.5 to Proposition 5.3:

Corollary 6.6. Let ψ : Aop ⊗ B //Y be a V-bifunctor. A V-category C is equivalent to Kψ

if, and only if, C is complete and there exist a dense V-bifunctor β : B ⊗ X //C and a
codense V-bifunctor α : A ⊗ Z //C such that

C(β (b,x),α(a,z)) = Y (ψ(a,b),x ↘ z)

for all a ∈ A, b ∈ B, x ∈ X, z ∈ Z.

Corollary 6.7. Let ζ : Aop ⊗ B //X be a V-bifunctor. A V-category C is equivalent to K†ζ

if, and only if, C is complete and there exist a dense V-bifunctor β : B ⊗ Zop //C and a
codense V-bifunctor α : A ⊗ Y op //C such that

C(β (b,z),α(a,y)) = X(ζ (a,b),z ↙ y)

for all a ∈ A, b ∈ B, y ∈ Y , z ∈ Z.
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7 Examples

7.1 When X = Y = Z = V

When X = Y = Z = V, the multiplication ⊗ of the quantale V obviously induces a two-
variable adjunction on V, since

V (x ⊗ y,z) =V (x,y → z) =V (y,x → z)

for all x,y,z ∈ V. A V-bifunctor ϕ : Aop ⊗ B //V is precisely a V-distributor

ϕ : A //◦ B;

that is, a map ϕ : A×B //V satisfying

B(b,b′)⊗ ϕ(a,b)⊗ A(a′,a)⩽ ϕ(a′,b′)

for all a,a′ ∈ A, b,b′ ∈ B. Therefore, the Isbell adjunction ϕ↑ ⊣ ϕ↓ and Kan adjunctions
ϕ∗ ⊣ ϕ∗, ϕ† ⊣ ϕ† induced by ϕ are exactly the ones given in [25, Proposition 4.1] and [24,
Proposition 6.2.1], respectively, when Q = V is a commutative quantale. In this case, Mϕ ,
Kϕ and K†ϕ are separated and complete V-categories since so is V, and the corresponding
representation theorems are formulated as follows:

Corollary 7.1. Let ϕ : A //◦ B be a V-distributor, and let C be a separated V-category.

(1) C is isomorphic to Mϕ if, and only if, C is complete and there exist a dense V-bifunctor
α : A ⊗ V //C and a codense V-bifunctor β : B ⊗ Vop //C and such that

C(α(a,y),β (b,x)) = (x ⊗ y)→ ϕ(a,b)

for all a ∈ A, b ∈ B, x,y ∈ V.
(2) C is isomorphic to Kϕ if, and only if, C is complete and there exist a dense V-bifunctor

β : B ⊗ V //C and a codense V-bifunctor α : A ⊗ V //C such that

C(β (b,x),α(a,z)) = ϕ(a,b)→ (x → z)

for all a ∈ A, b ∈ B, x,z ∈ V.
(3) C is isomorphic to K†ϕ if, and only if, C is complete and there exist a dense V-bifunctor

β : B ⊗ Vop //C and a codense V-bifunctor α : A ⊗ Vop //C such that

C(β (b,z),α(a,y)) = ϕ(a,b)→ (y → z)

for all a ∈ A, b ∈ B, y,z ∈ V.

Remark 7.2. As elaborated in [11, Section 7], (1) and (2) of Corollary 7.1 are actually the
commutative case of [11, Corollary 7.9], whose prototypes come from [2, Theorem 14(2)]
and [20, Proposition 7.3], respectively.
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7.2 Multi-adjoint concept lattices

In the special case of V = 2, the two-element Boolean algebra, a two-variable adjunction
with respect to ordered sets X , Y , Z consists of maps

⊛ : X ×Y //Z, ↙ : Z ×Y //X , ↘ : X ×Z //Y

such that

x ⊛ y ⩽ z ⇐⇒ x ⩽ z ↙ y ⇐⇒ y ⩽ x ↘ z

for all x ∈ X , y ∈ Y , z ∈ Z; that is, (X ,Y,Z,⊛,↙,↘) is an adjoint triple in the sense of [17,
16]. For any sets A, B and maps

ϕ : A×B //Z, ψ : A×B //Y and ζ : A×B //X ,

– Mϕ is the multi-adjoint concept lattice of the context (A,B,ϕ) [17,12],
– Kψ is the multi-adjoint property-oriented concept lattice of the context (A,B,ψ) [16,

12],
– K†ζ is the multi-adjoint object-oriented concept lattice of the context (A,B,ζ ) [16,12].

In particular, our Theorem 6.2 formalizes the representation theorem of the multi-adjoint
concept lattice (see [17, Theorem 20]) when V = 2.

7.3 Tensors and cotensors

For every complete V-category X , from (4.ii) we see that its tensors and cotensors give rise
to a two-variable adjunction

(V,X ,X ,⋆,Xop(−,−),↣); (7.i)

explicitly,

X(v⋆ x,y) = V(v,Xop(y,x)) = X(x,v ↣ y)

for all v ∈ V, x,y ∈ X . In this case:

(1) The Isbell adjunction induced by a V-bifunctor ϕ : Aop ⊗ B //X is given by

ϕ↑ : XAop
// (VB)op, (ϕ↑µ)b =

∧
a∈A

X(µa,ϕ(a,b)) = XAop
(µ,ϕ(−,b)), (7.ii)

ϕ
↓ : (VB)op //XAop

, (ϕ↓
λ )a =

∧
b∈B

λb ↣ ϕ(a,b), (7.iii)

which satisfies

XAop
(µ,ϕ↓

λ ) = (VB)op(ϕ↑µ,λ ) =
∧
b∈B

λb → XAop
(µ,ϕ(−,b)) (7.iv)

for all µ ∈ XAop
, λ ∈ VB. In particular:
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(1a) If B = 1, the singleton V-category, then a V-bifunctor τ : Aop ⊗ 1 // X may be
identified with τ ∈ XAop

, and (7.iv) becomes

XAop
(µ,τ↓v) = Vop(τ↑µ,v) = v → XAop

(µ,τ)

for all µ ∈ XAop
, v ∈ V; that is,

τ
↓v = v ↣ τ

is the cotensor of v and τ in XAop
(cf. (4.i)), given by the pointwise cotensors inher-

ited from X , and
Mτ = {v ↣ τ | v ∈ V}.

(1b) If
ϕ : Aop ⊗ XAop

//X , ϕ(a,µ) = µa (7.v)

is the evaluation V-bifunctor, then it follows from (7.ii) and (7.iii) that

ϕ↑µ = XAop
(µ,−) and ϕ

↓
Λ =

∧
τ∈XAop

Λτ ↣ τ

for all µ ∈ XAop
, Λ ∈ VXAop

; that is,

ϕ↑ = y†
XAop and ϕ

↓ = infXAop ,

where the latter identity is an immediate consequence of the completeness of XAop

and the formula for infima given in [25, Theorem 2.8]. Since ϕ↓ϕ↑ = infXAop y†
XAop ∼=

1XAop , we have now
Mϕ = XAop

.

(2) The Kan adjunction induced by a V-bifunctor ψ : Aop ⊗ B //X is given by

ψ
∗ : VBop

//XAop
, (ψ∗

λ )a =
∨
b∈B

λb⋆ψ(a,b), (7.vi)

ψ∗ : XAop
//VBop

, (ψ∗µ)b =
∧
a∈A

X(ψ(a,b),µa) = XAop
(ψ(−,b),µ), (7.vii)

which satisfies

XAop
(ψ∗

λ ,µ) = VBop
(λ ,ψ∗µ) =

∧
b∈B

λb → XAop
(ψ(−,b),µ) (7.viii)

for all µ ∈ XAop
, λ ∈ VBop

. In particular:
(2a) If B = 1, then for each τ ∈ XAop

, (7.viii) becomes

XAop
(τ∗v,µ) = V(v,τ∗µ) = v → XAop

(τ,µ)

for all µ ∈ XAop
, v ∈ V; that is,

τ
∗v = v⋆ τ

is the tensor of v and τ in XAop
(cf. (4.i)), given by the pointwise tensors inherited

from X , and
Kτ = {XAop

(τ,µ) | µ ∈ XAop}.
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(2b) If ψ : Aop ⊗ XAop
//X is the evaluation V-bifunctor given by (7.v), then it follows

from (7.vi) and (7.vii) that

ψ
∗
Λ =

∨
τ∈XAop

Λτ ⋆ τ and ψ∗µ = XAop
(−,µ)

for all µ ∈ XAop
, Λ ∈ V(XAop

)op
; that is,

ψ
∗ = supXAop and ψ∗ = yXAop

by [25, Theorem 2.8], and consequently

Kψ = Fix(yXAop supXAop ) = {yXAop µ | µ ∈ XAop} ≃ XAop
.

(3) The Kan adjunction induced by a V-bifunctor ζ : Aop ⊗ B //V, i.e., a V-distributor
ζ : A //◦ B, is given by

ζ† : (XB)op // (XA)op, (ζ†λ )a =
∧
b∈B

ζ (a,b)↣ λb, (7.ix)

ζ
† : (XA)op // (XB)op, (ζ †

µ)b =
∨
a∈A

ζ (a,b)⋆µa. (7.x)

Note that ζ† ⊣ ζ † apparently generalizes the adjunction given by [24, Proposition 6.2.1]
(in the case of Q = V) by replacing the multiplication ⊗ and the implication → of
V with the tensor and cotensor of X , respectively. In particular, if A = (A,α) is a V-
category, then α : A //◦ A is a V-distributor, and it is straightforward to check that
α† ∼= α† ∼= 1(XA)op , which necessarily forces that K†α = (XA)op.

7.4 (Generalized) metric spaces

Recall that a (generalized) metric space is precisely a [0,∞]-category (cf. Example 2.2(2)).
The implication of the quantale

[0,∞] = ([0,∞],⩾,+,0)

is given by
x → y = max{0,y− x}

for all x,y ∈ [0,∞], where “max” refers to the standard order of extended real numbers. In
order to eliminate ambiguity, we denote joins and meets with respect to the standard order
on [0,∞] by

⊔
and

d
, respectively.

Given a topological space X , let LSC(X , [0,∞]) denote the set of lower semi-continuous
maps from X to [0,∞]; that is, maps f : X // [0,∞] such that {x ∈ X | f x ⩽ a} is closed for
all a ∈ [0,∞]. LSC(X , [0,∞]) becomes a (generalized) metric space, with

LSC(X , [0,∞])( f ,g) =
⊔
x∈X

max{0,gx− f x}

for all f ,g ∈ LSC(X , [0,∞]). It is clear that LSC(X , [0,∞]) is closed with respect to pointwise
joins of maps, making itself a complete lattice, and moreover:
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(1) LSC(X , [0,∞]) is tensored, with

a⋆ f : X // [0,∞], (a⋆ f )x = a+ f x

for all a ∈ [0,∞], f ∈ LSC(X , [0,∞]), x ∈ X ;
(2) LSC(X , [0,∞]) is cotensored, with

a ↣ f : X // [0,∞], (a ↣ f )x = max{0, f x−a}

for all a ∈ [0,∞], f ∈ LSC(X , [0,∞]), x ∈ X .

It follows from Proposition 4.1 that LSC(X , [0,∞]) is a complete [0,∞]-category. Hence, by
setting V = [0,∞] and X = LSC(X , [0,∞]) in (7.i) we obtain a two-variable adjunction in
metric spaces.

Let Y be a classical metric space (whose metric is symmetric, finite and separated)
equipped with the usual metric topology. Then the set C(X ,Y ) of continuous maps from
X to Y , and the set [0,∞]Y of non-expansive maps from Y to [0,∞], are both equipped with a
(generalized) metric structure given by Equation (2.i) in Example 2.2(6). Since the compo-
sition g f of f ∈ C(X ,Y ) and g ∈ [0,∞]Y lies in LSC(X , [0,∞]), it is straightforward to check
that

ϕ : [0,∞]Y ×C(X ,Y ) //LSC(X , [0,∞]), (g, f ) 7→ g f

defines a [0,∞]-bifunctor, where the metric on [0,∞]Y ×C(X ,Y ) is given by Example 2.2(5).

(1) The induced Isbell adjunction

ϕ↑ ⊣ ϕ
↓ : ([0,∞]C(X ,Y ))op //LSC(X , [0,∞])[0,∞]Y

is given by

(ϕ↑µ) f =
⊔

g∈[0,∞]Y

LSC(X , [0,∞])(µg,g f ) =
⊔

g∈[0,∞]Y

⊔
x∈X

max{0,g f x− (µg)x},

((ϕ↓
λ )g)x =

⊔
f∈C(X ,Y )

(λ f ↣ g f )x =
⊔

f∈C(X ,Y )

max{0,g f x−λ f}

for all µ ∈LSC(X , [0,∞])[0,∞]Y , λ ∈ [0,∞]C(X ,Y ), and Mϕ consists of µ ∈LSC(X , [0,∞])[0,∞]Y

satisfying

(µg)x =
⊔

f∈C(X ,Y )

l

g′∈[0,∞]Y

l

x′∈X

max{0,g f x−max{0,g′ f x′− (µg′)x′}}

for all g ∈ [0,∞]Y , x ∈ X .
(2) The induced Kan adjunction

ϕ
∗ ⊣ ϕ∗ : LSC(X , [0,∞])[0,∞]Y // [0,∞]C(X ,Y )op

is given by

((ϕ∗
λ )g)x =

l

f∈C(X ,Y )

(λ f ⋆g f )x =
l

f∈C(X ,Y )

λ f +g f x,

(ϕ∗µ) f =
⊔

g∈[0,∞]Y

LSC(X , [0,∞])(g f ,µg) =
⊔

g∈[0,∞]Y

⊔
x∈X

max{0,(µg)x−g f x}
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for all λ ∈ [0,∞]C(X ,Y )op
, µ ∈ LSC(X , [0,∞])[0,∞]Y , and Kϕ consists of λ ∈ [0,∞]C(X ,Y )op

satisfying

λ f =
⊔

g∈[0,∞]Y

⊔
x∈X

l

f ′∈C(X ,Y )

max{0,λ f ′+g f ′x−g f x}

for all f ∈ C(X ,Y ).
(3) In particular, for each x ∈ X ,

ϕx : [0,∞]Y ×C(X ,Y ) // [0,∞], (g, f ) 7→ g f x

defines a [0,∞]-distributor. The induced Kan adjunction

(ϕx)† ⊣ ϕ
†
x : (LSC(X , [0,∞])([0,∞]Y )op

)op // (LSC(X , [0,∞])C(X ,Y ))op

is given by

(((ϕx)†λ )g)x′ =
⊔

f∈C(X ,Y )

(g f x ↣ λ f )x′ =
⊔

f∈C(X ,Y )

max{0,λ f x′−g f x},

((ϕ†
x µ) f )x′ =

l

g∈[0,∞]Y

(g f x⋆µg)x′ =
l

g∈[0,∞]Y

g f x+(µg)x′.

for all λ ∈ LSC(X , [0,∞])C(X ,Y ), µ ∈ LSC(X , [0,∞])([0,∞]Y )op
, and K†ϕ consists of λ ∈

LSC(X , [0,∞])C(X ,Y ) satisfying

(λ f )x′ =
l

g∈[0,∞]Y

⊔
f ′∈C(X ,Y )

(g f x+max{0,λ f ′x′−g f ′x})

for all f ∈ C(X ,Y ), x′ ∈ X .
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2. Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128(1-3),
277–298 (2004)
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