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Abstract

We investigate approach spaces generated by probabilistic metric spaces with respect to a continuous t-norm ∗ on the
unit interval [0, 1]. Let k∗ be the supremum of the idempotent elements of ∗ in [0, 1). It is shown that if k∗ = 1 (resp.
k∗ < 1), then an approach space is probabilistic metrizable with respect to ∗ if and only if it is probabilistic metrizable
with respect to the minimum (resp. product) t-norm.
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1. Introduction

Probabilistic metric spaces [20, 23] are a generalization of metric spaces in which the distance takes values in
distance distributions instead of non-negative real numbers. Approach spaces [16, 17, 18], introduced by Lowen, are
a common extension for topological spaces and metric spaces.

The motivation of this paper originates from Lawvere’s presentation of metric spaces as enriched categories [15],
and the discovery of Manes and Barr that topological spaces can be encoded in terms of ultrafilter convergence [19, 2],
which give rise to the theory of monoidal topology [4, 5, 10]. Explicitly:

• Classical metric spaces (in the sense of Fréchet [7]) are symmetric, separated and finitary [0,∞]op-categories,
and probabilistic metric spaces are symmetric, separated and finitary ∆+-categories [3, 9], where [0,∞]op is the
Lawvere quantale [15, 22], and ∆+ is the quantale of distance distributions.

• Classical topological spaces are 2-valued topological spaces, and approach spaces are [0,∞]op-valued topolog-
ical spaces [14], where 2 is the two-element Boolean algebra.

Since the Lawvere quantale [0,∞]op = ([0,∞]op,+, 0) is isomorphic to the quantale [0, 1] = ([0, 1],×, 1) of the
unit interval equipped with the usual product, the classical metrizability of topological spaces is actually to consider

• 2-valued topological spaces generated by symmetric, separated and finitary [0, 1]-categories.

So, it is natural to consider its counterpart by taking tensor products ⊠ in the category Sup of complete lattices and
sup-preserving maps [11]; that is,

• ([0,∞]op ⊠ 2)-valued topological spaces generated by symmetric, separated and finitary ([0,∞]op ⊠ [0, 1])-
categories.

Since [0,∞]op ⊠ 2 = [0,∞]op (see [11, Proposition I.5.2]) and [0,∞]op ⊠ [0, 1] = ∆+ (see [8, Subsection 3.3]), we are
precisely asking for

• [0,∞]op-valued topological spaces generated by symmetric, separated and finitary ∆+-categories;
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that is,

• approach spaces generated by probabilistic metric spaces.

As a first step towards the probabilistic metrizability of approach spaces, in this paper we focus on the connections
between approach spaces generated by probabilistic metric spaces with respect to different continuous t-norms [12, 1].
Explicitly, the triangle inequality in a probabilistic metric space (X, α) can be expressed as

α(y, z, r) ∗ α(x, y, s) ⩽ α(x, z, r + s)

for all x, y, z ∈ X, r, s ∈ [0,∞], where ∗ is a continuous t-norm1 on the unit interval [0, 1]. Therefore, the probabilistic
metrizability of an approach space relies on the choice of the continuous t-norm ∗. We say that an approach space is
probabilistic metrizable with respect to ∗, or ∗-metrizable for short, if it is generated by a probabilistic metric with
respect to a continuous t-norm ∗ on [0, 1]. The main result of this paper, Theorem 4.5, reveals that for each continuous
t-norm ∗ on [0, 1], the ∗-metrizability of approach spaces depends on the supremum of the idempotent elements of ∗
in [0, 1) (denoted by k∗):

(1) If k∗ = 1, then an approach space is ∗-metrizable if and only if it is probabilistic metrizable with respect to the
minimum t-norm on [0, 1].

(2) If k∗ < 1, then an approach space is ∗-metrizable if and only if it is probabilistic metrizable with respect to the
product t-norm on [0, 1].

As examples, in Section 5 we prove the following:

• Metric approach spaces are ∗-metrizable for every continuous t-norm ∗ on [0, 1] (Proposition 5.1).

• Approach spaces generated by metrizable topological spaces are ∗-metrizable for every continuous t-norm ∗ on
[0, 1] (Proposition 5.2).

• If an approach space is ∗-metrizable for every continuous t-norm ∗ on [0, 1], then it is uniform (Corollary 5.7).

• If an approach space is ∗-metrizable for some continuous t-norm ∗ on [0, 1], then it is locally countable (Propo-
sition 5.4).

• Approach spaces can be classified by their probabilistic metrizability (Proposition 5.10).

2. Preliminaries

Throughout this paper, let [0,∞] denote the extended non-negative real line, with the usual addition “+” and
subtraction “−” extended via

t +∞ = ∞ + t = ∞ and ∞− t =

∞ if t < ∞,
0 if t = ∞

to [0,∞]. A map
φ : [0,∞] // [0, 1]

is called a distance distribution (see [23, Definition 4.3.1]) if

(D1) φ(0) = 0, φ(∞) = 1,

(D2) φ is monotone, and

(D3) φ is left-continuous on (0,∞).

1In some literature (e.g., [23]) the t-norm ∗ is only required to be left-continuous.
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In particular, we have
φ(t) = sup

s<t
φ(s)

for all t ∈ [0,∞).
It is easy to verify the following lemma, which gives a canonical procedure of generating distance distributions:

Lemma 2.1. For every monotone map φ : [0,∞] // [0, 1], the map

ψ : [0,∞] // [0, 1], ψ(t) =

sup
s<t

φ(s) if t < ∞,

1 if t = ∞

is a distance distribution.

Recall that a binary operation ∗ on an interval [a, b] is a continuous t-norm [12, 1] if

• ([a, b], ∗, b) is a commutative monoid,

• p ∗ q ⩽ p′ ∗ q′ if p ⩽ p′ and q ⩽ q′ in [a, b], and

• ∗ : [a, b]2 // [a, b] is a continuous function (with respect to the usual topology).

It is obvious that p ∗ q ⩽ min{p, q} for all p, q ∈ [a, b]; in particular, a ∗ q = a for all q ∈ [a, b]. An element
q ∈ [a, b] is idempotent if q ∗ q = q and, when it is non-idempotent, it necessarily holds that q ∗ q < q.

Lemma 2.2. Let ∗ be a continuous t-norm on [a, b]. If q is an idempotent element, then p ∗ q = min{p, q} for all
p ∈ [a, b].

Proof. If p ⩾ q, then q = q ∗ q ⩽ p ∗ q, and thus p ∗ q = q. Suppose that p ⩽ q. Since a ∗ q = a and q ∗ q = q, the
continuity of ∗ guarantees the existence of p′ ∈ [a, q] such that p′ ∗ q = p. It follows that

p ∗ q = p′ ∗ q ∗ q = p′ ∗ q = p.

Given a continuous t-norm ∗ on [a, b], define

q− = sup{p ∈ [a, q] | p ∗ p = p} (2.i)

for all q ∈ [a, b]. It is clear that q− is the largest idempotent element in [a, q].

Lemma 2.3. (p ∗ q)− = min{p−, q−} for all p, q ∈ [a, b].

Proof. (p ∗ q)− ⩽ min{p−, q−} follows immediately from p ∗ q ⩽ min{p, q}. Conversely, by Lemma 2.2,

min{p−, q−} = p− ∗ q− ⩽ p ∗ q,

and consequently min{p−, q−} ⩽ (p ∗ q)−.

It is well known [6, 21, 12, 13, 1] that every continuous t-norm ∗ on the unit interval [0, 1] can be written as an
ordinal sum of three basic t-norms, i.e., the minimum, the product, and the Łukasiewicz t-norm:

• The minimum t-norm ∗M: p ∗M q = min{p, q} for all p, q ∈ [0, 1].

• The product t-norm ∗P: p ∗P q = pq for all p, q ∈ [0, 1].

• The Łukasiewicz t-norm ∗Ł: p ∗Ł q = max{0, p + q − 1} for all p, q ∈ [0, 1].

Explicitly, we say that continuous t-norms ([a1, b1], ∗1) and ([a2, b2], ∗2) are isomorphic if there exists an order-
isomorphism

φ : [a1, b1] // [a2, b2]

such that
φ : ([a1, b1], ∗1, b1) // ([a2, b2], ∗2, b2)

is an isomorphism of commutative monoids. Then:
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Lemma 2.4. [12, 13, 1] For each continuous t-norm ([0, 1], ∗), the set of non-idempotent elements of ∗ in [0, 1] is a
union of countably many pairwise disjoint open intervals

{(ai, bi) | 0 < ai < bi < 1, i ∈ I, I is countable},

and for each i ∈ I, the continuous t-norm ([ai, bi], ∗) obtained by restricting ∗ to [ai, bi] is either isomorphic to the
product t-norm ([0, 1], ∗P) or isomorphic to the Łukasiewicz t-norm ([0, 1], ∗Ł).

The convolution of distance distributions φ, ψ : [0,∞] // [0, 1] with respect to a continuous t-norm ∗ on [0, 1] is
defined as a map

φ ⊗∗ ψ : [0,∞] // [0, 1], (φ ⊗∗ ψ)(t) =

 sup
r+s=t

φ(r) ∗ ψ(s) if t < ∞,

1 if t = ∞.

It is obvious that the distance distribution

κ : [0,∞] // [0, 1], κ(t) =

0 if t = 0,
1 if t > 0

is the neutral element for the convolution ⊗∗. A probabilistic metric space (see [23, Definition 8.1.1]) is a set X
equipped with a map

α : X × X × [0,∞] // [0, 1],

such that

(P1) α(x, y,−) : [0,∞] // [0, 1] is a distance distribution,

(P2) α(x, x,−) = κ,

(P3) α(x, y, r) = α(y, x, r),

(P4) α(x, y,−) = κ =⇒ x = y, and

(P5) α(y, z, r) ∗ α(x, y, s) ⩽ α(x, z, r + s)

for all x, y, z ∈ X, r, s ∈ [0,∞], where the value
α(x, y, r)

is interpreted as the probability that the distance between x and y is less than r. A map f : (X, α) // (Y, β) between
probabilistic metric spaces is non-expansive if

α(x, x′, t) ⩽ β( f (x), f (x′), t)

for all x, x′ ∈ X, t ∈ [0,∞]. The category of probabilistic metric spaces (with respect to a continuous t-norm ∗ on
[0, 1]) and non-expansive maps is denoted by

ProbMet∗.

Let Met denote the category of classical metric spaces (in the sense of Fréchet [7]) and non-expansive maps. There is
a canonical embedding functor

χ : Met // ProbMet∗ (2.ii)

that sends each metric space (X, d) to the probabilistic metric space (X, αd) with

αd : X × X × [0,∞] // [0, 1], αd(x, y, t) =

0 if t ⩽ d(x, y),
1 if t > d(x, y).

(2.iii)

Lemma 2.5. (1) If (X, α) is a probabilistic metric space with respect to ∗M , then (X, α) is also a probabilistic metric
space with respect to every continuous t-norm ∗ on [0, 1].
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(2) If (X, α) is a probabilistic metric space with respect to ∗P, then (X, α) is also a probabilistic metric space with
respect to ∗Ł.

Proof. Note that for any p, q ∈ [0, 1], we have p ∗ q ⩽ min{p, q} and p ∗Ł q ⩽ pq, where the latter follows from
pq − p ∗Ł q = pq − p − q + 1 = (p − 1)(q − 1) ⩾ 0. Hence, the conclusions follow from (P5).

Let 2X denote the powerset of a set X. An approach space [16, 18] is a set X equipped with a map

δ : X × 2X // [0,∞],

such that

(A1) δ(x, {x}) = 0,

(A2) δ(x,∅) = ∞,

(A3) δ(x, A ∪ B) = min{δ(x, A), δ(x, B)}, and

(A4) δ(x, A) ⩽ sup
b∈B

δ(b, A) + δ(x, B)

for all x ∈ X, A, B ∈ 2X . A map f : (X, δ) // (Y, θ) between approach spaces is a contraction if

δ(x, A) ⩾ θ( f (x), f (A))

for all x ∈ X, A ∈ 2X . We denote by
App

the category of approach spaces and contractions. It is well known (see, e.g., [18, Theorem 2.2.4]) that the category
Top of topological spaces and continuous maps is a coreflective subcategory of App, with the coreflection

C : App // Top (2.iv)

sending each approach space (X, δ) to (X, clδ), where

clδ : 2X // 2X , clδ(A) = {x ∈ X | δ(x, A) = 0} (2.v)

is the topological closure operator induced by the approach structure δ.

3. Approach structures on probabilistic metric spaces

Let (X, α) be a probabilistic metric space with respect to a continuous t-norm ∗ on [0, 1]. Define a map

δα : X × 2X // [0,∞], δα(x, A) = inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1}. (3.i)

Proposition 3.1. (X, δα) is an approach space.

Proof. (X, δα) clearly satisfies (A1) and (A2). For (A3) and (A4), let x ∈ X, A, B ∈ 2X . First,

δα(x, A ∪ B) = inf{r ∈ [0,∞] | sup
y∈A∪B

α(x, y, r) = 1}

= inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1 or sup
b∈B

α(x, b, r) = 1}

= min{inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1}, inf{r ∈ [0,∞] | sup
b∈B

α(x, b, r) = 1}}

= min{δα(x, A), δα(x, B)}.

Second, for each t ∈ (0,∞), we show that δα(x, A) ⩽ t whenever sup
b∈B

δα(b, A) + δα(x, B) < t. In this case, there exist

r, s ∈ [0,∞) such that
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• r + s = t,

• δα(b, A) < r for all b ∈ B, and

• δα(x, B) < s.

For any p ∈ (0, 1), let q ∈ (p, 1). Then the continuity of ∗ guarantees the existence of k ∈ (0, 1) such that p < q ∗ k.
Note that δα(x, B) < s and the monotonicity of α(x, b,−) guarantees that sup

b∈B
α(x, b, s) = 1. Thus there exists b ∈ B

such that q < α(x, b, s). Similarly, from sup
a∈A

α(b, a, r) = 1 we may find a ∈ A such that k < α(b, a, r). It follows that

α(x, a, t) ⩾ α(b, a, r) ∗ α(x, b, s) ⩾ q ∗ k > p,

and consequently sup
a∈A

α(x, a, t) = 1 by the arbitrariness of p. Hence δα(x, A) ⩽ t.

Proposition 3.2. Let (X, α), (Y, β) be probabilistic metric spaces with respect to a continuous t-norm ∗ on [0, 1]. If
f : (X, α) // (Y, β) is non-expansive, then f : (X, δα) // (Y, δβ) is a contraction.

Proof. Let x ∈ X and A ⊆ X. For each r ∈ [0,∞], since f : (X, α) // (Y, β) is non-expansive, we have

α(x, y, r) ⩽ β( f (x), f (y), r)

for each y ∈ X. Therefore,

δα(x, A) = inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1} ⩾ inf{r ∈ [0,∞] | sup
a∈A

β( f (x), f (a), r) = 1} = δβ( f (x), f (A)),

which implies that f : (X, δα) // (Y, δβ) is a contraction.

Thus, we obtain a faithful functor
Γ : ProbMet∗ // App.

Note that the diagram

ProbMet∗ App
Γ

//

Met

ProbMet∗

χ

��

Met Top� � // Top

App

OO

C

is commutative (see (2.ii) and (2.iv) for the definitions of χ and C). Indeed, given a classical metric space (X, d), it is
easy to check that

δαd (x, A) = d(x, A) := inf
a∈A

d(x, a)

for all x ∈ X, A ⊆ X; and consequently, the topological closure operator induced by δαd (under the functor C) is
precisely the closure operator induced by the metric d. Hence, the approach structure (3.i) on a probabilistic metric
space is compatible with the metric topology on a classical metric space.

Moreover, for each probabilistic metric space (X, α), the topological space CΓ(X, α) is exactly the strong topology
(see [23, Definition 12.1.1]) for (X, α):

Proposition 3.3. The neighborhood system {Nx}x∈X of the topological space CΓ(X, α) is given by

Nx = {Ux(t) | t ∈ (0,∞)},

where
Ux(t) = {y ∈ X | α(x, y, t) > 1 − t}.
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Proof. By (2.v) and (3.i), the topological space CΓ(X, α) is given by the closure operator

clδα : 2X // 2X ,

with
x ∈ clδα (A) ⇐⇒ inf{r ∈ [0,∞] | sup

a∈A
α(x, a, r) = 1} = 0

for all A ⊆ X. Thus

x ∈ clδα (A) ⇐⇒ ∀r ∈ (0,∞) : sup
a∈A

α(x, a, r) = 1

⇐⇒ ∀r ∈ (0,∞), ∀t ∈ (0, r], ∃a ∈ A : α(x, a, r) > 1 − t

⇐⇒ ∀t ∈ (0,∞), ∀r ∈ [t,∞), ∃a ∈ A : α(x, a, r) > 1 − t

⇐⇒ ∀t ∈ (0,∞), ∃a ∈ A : α(x, a, t) > 1 − t (α(x, y,−) is monotone)
⇐⇒ ∀t ∈ (0,∞) : A ∩ Ux(t) , ∅

for all A ⊆ X. Hence, the closure operator clδα and the neighborhood system {Nx}x∈X generates the same topology.

4. Probabilistic metrizability of approach spaces

Let ∗ be a continuous t-norm on [0, 1]. We say that an approach space (X, δ) is probabilistic metrizable with respect
to ∗, or ∗-metrizable for short, if there exists a probabilistic metric α with respect to ∗ on X, such that

δ = δα.

Lemma 4.1. Let ∗ be a continuous t-norm on [0, 1]. Then every ∗M-metrizable approach space is ∗-metrizable.

Proof. This is an immediate consequence of Lemma 2.5(1).

Lemma 4.2. An approach space (X, δ) is ∗P-metrizable if and only if it is ∗Ł-metrizable.

Proof. The necessity follows immediately from Lemma 2.5(2). For the sufficiency, let α : X × X × [0,∞] // [0, 1] be
a probabilistic metric with respect to ∗Ł such that δ = δα. Define a map

β : X × X × [0,∞] // [0, 1], β(x, y, t) =

0 if t = 0,
eα(x,y,t)−1 if t > 0.

First, β(x, y,−) is a distance distribution. Indeed, it is clear that β(x, y, 0) = 0, β(x, y,∞) = 1 and β(x, y,−) is
monotone. Since α(x, y,−) is left-continuous on (0,∞) and the exponential function is continuous, β(x, y,−) is also
left-continuous on (0,∞).

Second, β is a probabilistic metric with respect to ∗P, since β clearly satisfies (P2), (P3) and (P4), while (P5)
follows from

β(y, z, r) ∗P β(x, y, s) = eα(y,z,r)+α(x,y,s)−2 ⩽ eα(y,z,r)∗Łα(x,y,s)−1 ⩽ eα(x,z,r+s)−1 = β(x, z, r + s)

for all x, y, z ∈ X, r, s ∈ (0,∞].
Finally, δα = δβ, because it is easy to see that

sup
a∈A

α(x, a, r) = 1 ⇐⇒ sup
a∈A

β(x, a, r) = 1

for all x ∈ X, A ⊆ X, r ∈ [0,∞].

Let ∗ be a continuous t-norm on [0, 1]. Define

k∗ = sup{q ∈ [0, 1) | q ∗ q = q};

that is, the supremum of the idempotent elements of ∗ in [0, 1).
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Lemma 4.3. Let ∗ be a continuous t-norm on [0, 1] with k∗ = 1. Then

sup A = 1 ⇐⇒ sup{a− | a ∈ A} = 1

for all A ⊆ [0, 1].

Proof. It suffices to prove the “only if” part. Suppose that sup A = 1. For any r < 1, from k∗ = 1 we may find an
idempotent element q with r < q < 1, and from sup A = 1 we may find a ∈ A with q < a ⩽ 1. Thus r < q ⩽ a− ⩽ 1.
Since r is arbitrary, we deduce that sup{a− | a ∈ A} = 1.

Lemma 4.4. Let ∗1 and ∗2 be continuous t-norms on [0, 1]. If there exists an idempotent element q of ∗1 such that the
continuous t-norms ([q, 1], ∗1) and ([0, 1], ∗2) are isomorphic, then an approach space (X, δ) is ∗1-metrizable if and
only if it is ∗2-metrizable.

Proof. Let φ : ([q, 1], ∗1) // ([0, 1], ∗2) be an isomorphism of continuous t-norms. For the “only if” part, suppose that
there is a probabilistic metric α : X × X × [0,∞] // [0, 1] with respect to ∗1 such that δ = δα. Define a map

β : X × X × [0,∞] // [0, 1], β(x, y, t) =

0 if α(x, y, t) < q,
φ(α(x, y, t)) if α(x, y, t) ⩾ q.

We show that β is a probabilistic metric with respect to ∗2 and δβ = δ.
First, β(x, y,−) is a distance distribution. It is clear that β(x, y, 0) = 0, β(x, y,∞) = 1 and β(x, y,−) is monotone.

For the left-continuity of β(x, y,−), let t ∈ [0,∞).

• If α(x, y, t) < q, then β(x, y, t) = 0 = sup
s<t

β(x, y, s).

• If α(x, y, t) = q, then β(x, y, t) = φ(q) = 0 = sup
s<t

β(x, y, s).

• If α(x, y, t) > q, then the left-continuity of α(x, y,−) guarantees that there exists r < t such that α(x, y, s) > q for
all s ∈ (r, t). It follows that

β(x, y, t) = φ(α(x, y, t)) = φ( sup
s∈(r,t)

α(x, y, s)) = sup
s∈(r,t)

φ(α(x, y, s)) = sup
s<t

β(x, y, s).

Second, β is a probabilistic metric with respect to ∗2. It is clear that β satisfies (P2), (P3) and (P4). For (P5), let
x, y, z ∈ X and r, s ∈ [0,∞].

• If either α(y, z, r) < q or α(x, y, s) < q, then

β(y, z, r) ∗2 β(x, y, s) = 0 ⩽ β(x, z, r + s).

• If α(y, z, r) ⩾ q and α(x, y, s) ⩾ q, then α(x, z, r + s) ⩾ q ∗1 q = q, and consequently

β(y, z, r) ∗2 β(x, y, s) = φ(α(y, z, r)) ∗2 φ(α(x, y, s))
= φ(α(y, z, r) ∗1 α(x, y, s))
⩽ φ(α(x, z, r + s))
= β(x, z, r + s).

Finally, δβ = δ. Since φ is an order-isomorphism, we have

sup
a∈A

β(x, a, r) = 1 ⇐⇒ sup
a∈A

α(x, a, r) = 1

for all x ∈ X, A ⊆ X, r ∈ [0,∞]. The conclusion thus follows.
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Conversely, for the “if” part, suppose that there is a probabilistic metric β : X × X × [0,∞] // [0, 1] with respect
to ∗2 on X such that δ = δβ. Define a map

α : X × X × [0,∞] // [0, 1], α(x, y, t) =

0 if t = 0,
φ−1(β(x, y, t)) if t > 0.

We show that α is a probabilistic metric with respect to ∗1 and δα = δ.
First, α(x, y,−) is a distance distribution, since α(x, y, 0) = 0, α(x, y,∞) = 1, and

α(x, y, t) = φ−1(β(x, y, t)) = φ−1(sup
s<t

β(x, y, s)) = sup
s<t

φ−1(β(x, y, s)) = sup
s<t

α(x, y, s)

for all t ∈ (0,∞).
Second, α is a probabilistic metric with respect to ∗1, since α clearly satisfies (P2), (P3) and (P4), while (P5)

follows from

α(y, z, r) ∗1 α(x, y, s) = φ−1(β(y, z, r)) ∗1 φ
−1(β(x, y, s)) = φ−1(β(y, z, r) ∗2 β(x, y, s)) ⩽ α(x, z, r + s),

for all x, y, z ∈ X, r, s ∈ (0,∞].
Finally, δα = δ follows immediately from the fact that

sup
a∈A

α(x, a, r) = 1 ⇐⇒ sup
a∈A

β(x, a, r) = 1

for all x ∈ X, A ⊆ X, r ∈ [0,∞], which completes the proof.

Theorem 4.5. Let ∗ be a continuous t-norm on [0, 1].

(1) If k∗ = 1, then an approach space (X, δ) is ∗-metrizable if and only if it is ∗M-metrizable.

(2) If k∗ < 1, then an approach space (X, δ) is ∗-metrizable if and only if it is ∗P-metrizable.

Proof. (1) The sufficiency is an immediate consequence of Lemma 4.1. Conversely, suppose that there is a proba-
bilistic metric α : X × X × [0,∞] // [0, 1] with respect to ∗ on X such that δ = δα. Define a map

β : X × X × [0,∞] // [0, 1], β(x, y, t) =

sup
s<t

α(x, y, s)− if t < ∞,

1 if t = ∞.

We show that β is a probabilistic metric with respect to ∗M on X and δ = δβ.
First, the monotonicity of the map α(x, y,−)− : [0,∞] // [0, 1] and Lemma 2.1 guarantee that β(x, y,−) is a

distance distribution.
Second, β is a probabilistic metric with respect to ∗M on X, since β clearly satisfies (P2), (P3) and (P4), while (P5)

follows from

β(y, z, r) ∗M β(x, y, s) = (sup
a<r

α(y, z, a)−) ∗M (sup
b<s

α(x, y, b)−)

= sup
a<r, b<s

min{α(y, z, a)−, α(x, y, b)−}

= sup
a<r, b<s

(α(y, z, a) ∗ α(x, y, b))− (Lemma 2.3)

⩽ sup
a<r, b<s

α(x, y, a + b)−

⩽ sup
t<r+s

α(x, y, t)−

= β(x, z, r + s)
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for all x, y, z ∈ X, r, s ∈ [0,∞).
Finally, δ = δβ. Indeed,

δβ(x, A) = inf{r ∈ [0,∞] | sup
a∈A

β(x, a, r) = 1}

= inf{r ∈ [0,∞] | sup
a∈A

sup
s<r

α(x, a, s)− = 1}

= inf{r ∈ [0,∞] | sup
a∈A

sup
s<r

α(x, a, s) = 1} (Lemma 4.3)

= inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1}

= δ(x, A)

for all x ∈ X, A ⊆ X, as desired.
(2) By Lemma 2.4, the continuous t-norm ([k∗, 1], ∗) is either isomorphic to ([0, 1], ∗P) or ([0, 1], ∗Ł).

• If ([k∗, 1], ∗) is isomorphic to ([0, 1], ∗P), then it follows from Lemma 4.4 that (X, δ) is ∗-metrizable if and only
if it is ∗P-metrizable.

• If ([k∗, 1], ∗) is isomorphic to ([0, 1], ∗Ł), then it follows from Lemmas 4.2 and 4.4 that (X, δ) is ∗-metrizable if
and only if it is ∗P-metrizable.

5. Examples

5.1. Metric approach spaces
Given a (classical) metric space (X, d), the map

δd : X × 2X −→ [0,∞], δd(x, A) =

inf
y∈A

d(x, y) if A , ∅,

∞ if A = ∅

defines an approach structure on X. Such approach spaces are called metric approach spaces [17, 18].

Proposition 5.1. Metric approach spaces are ∗-metrizable for every continuous t-norm ∗ on [0, 1].

Proof. Let (X, δ) be an approach space such that δ = δd for some metric d on X. Let αd be the probabilistic metric on
X induced by d (see (2.iii)). Then the ∗-metrizability of (X, δ) follows from

δαd (x, A) = inf{r ∈ [0,∞] | sup
a∈A

αd(x, a, r) = 1}

= inf{r ∈ [0,∞] | ∃ a ∈ A : αd(x, a, r) = 1}
= inf{r ∈ [0,∞] | ∃ a ∈ A : r > d(x, a)}
= inf

a∈A
d(x, a)

= δ(x, A)

for all x ∈ X, A ⊆ X.

5.2. Topological approach spaces
Given a topological space (X, T ), the map

δT : X × 2X −→ [0,∞], δT (x, A) =

0 if x is in the closure of A,
∞ otherwise

defines an approach structure on X. Such approach spaces are called topologically generated.

10



Proposition 5.2. If (X, T ) is a metrizable topological space, then (X, δT ) is ∗-metrizable for every continuous t-norm
∗ on [0, 1].

Proof. By Lemma 4.1, it suffices to show that (X, δT ) is ∗M-metrizable. Let d be a metric on X such that x is in the
closure of A if and only if

inf
a∈A

d(x, a) = 0

for all x ∈ X and A ⊆ X. Let φ0 = κ, and for each t ∈ (0,∞), define a map

φt : [0,∞] // [0, 1], φt(x) =

1 − e−
x
t if x ∈ [0,∞),

1 if x = ∞.

Then φt is clearly a distance distribution for all t ∈ [0,∞). We claim that the map

α : X × X × [0,∞] // [0, 1], α(x, y, r) = φd(x,y)(r)

is a probabilistic metric with respect to ∗M on X. Indeed, since d is a metric, α clearly satisfies (P2), (P3) and (P4).
For (P5), we have to check that

α(y, z, r) ∗M α(x, y, s) ⩽ α(x, z, r + s) (5.i)

for all x, y, z ∈ X and r, s ∈ [0,∞). Note that (5.i) clearly holds when d(y, z) = 0 or d(x, y) = 0. Suppose that d(y, z) , 0
and d(x, y) , 0. Since

min
{ r
d(y, z)

,
s

d(x, y)

}
⩽

r + s
d(y, z) + d(x, y)

⩽
r + s

d(x, z)
,

we have
α(y, z, r) ∗M α(x, y, s) = min{1 − e−

r
d(y,z) , 1 − e−

s
d(x,y) } ⩽ 1 − e−

r+s
d(x,z) = α(x, z, r + s),

as desired. Finally, we show that
δT (x, A) = δα(x, A)

for all x ∈ X and A ⊆ X. Let p = inf
a∈A

d(x, a). There are two cases:

• If p > 0, then x is not in the closure of A, and thus δT (x, A) = ∞. On the other hand, since

sup
a∈A

α(x, a, r) = sup
a∈A

φd(x,a)(r) = sup
a∈A

(1 − e−
r

d(x,a) ) = 1 − e−
r
p < 1

for all r ∈ (0,∞), we have δα(x, A) = inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1} = inf{∞} = ∞.

• If p = 0, then δT (x, A) = 0. On the other hand, it is easy to check that

sup
a∈A

α(x, a, r) = sup
a∈A

φd(x,a)(r) = 1

for all r ∈ (0,∞). Hence δα(x, A) = inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1} = 0, which completes the proof.

5.3. Locally countable approach spaces
Let (X, α) be a probabilistic metric space. For each x ∈ X and n ⩾ 1, define a map

λx,n : X // [0,∞], λx,n(y) = inf
{
r ∈ [0,∞]

∣∣∣∣ α(x, y, r) > 1 −
1
n

}
.

Lemma 5.3. Let (X, α) be a probabilistic metric space. Then

δα(x, A) = sup
n⩾1

inf
a∈A

λx,n(a)

for all x ∈ X, A ⊆ X.
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Proof. For each n ⩾ 1 and r ∈ [0,∞], if sup
a∈A

α(x, a, r) = 1, then there exists a ∈ A such that α(x, a, r) > 1 −
1
n

. It

follows that

inf
a∈A

λx,n(a) = inf
a∈A

inf
{
r ∈ [0,∞]

∣∣∣∣ α(x, a, r) > 1 −
1
n

}
⩽ inf{r ∈ [0,∞] | sup

x∈A
α(x, a, r) = 1} = δα(x, A),

and consequently
sup
n⩾1

inf
a∈A

λx,n(a) ⩽ δα(x, A).

Conversely, we show that for any s ∈ (0,∞), sup
n⩾1

inf
a∈A

λx,n(a) < s necessarily implies δα(x, A) ⩽ s. In this case, for any

n ⩾ 1, we have

inf
a∈A

λx,n(a) = inf
a∈A

inf
{
r ∈ [0,∞]

∣∣∣∣ α(x, a, r) > 1 −
1
n

}
< s,

which guarantees the existence of a ∈ A such that α(x, a, s) > 1 −
1
n

(because α(x, a,−) is monotone). It follows that
sup
a∈A

α(x, a, s) = 1, and consequently

δα(x, A) = inf{r ∈ [0,∞] | sup
a∈A

α(x, a, r) = 1} ⩽ s.

Let (X, δ) be an approach space. For each x ∈ X, let

A(x) = {φ : X // [0,∞] | ∀A ⊆ X : inf
a∈A

φ(a) ⩽ δ(x, A)}.

The collection {A(x)}x∈X is called the associated approach system of (X, δ). A collection {B(x)}x∈X is a basis for the
approach system if

(B1) B(x) ⊆ A(x) for all x ∈ X,

(B2) For any φ1, φ2 ∈ B(x), there exists φ ∈ B(x) such that φ1, φ2 ⩽ φ (under the pointwise order).

(B3) Each φ ∈ A(x) is dominated by B(x) in the sense that

∀ϵ > 0, ∀ω < ∞, ∃ψ ∈ B(x), ∀y ∈ X : min{φ(y), ω} ⩽ ψ(y) + ϵ.

(X, δ) is said to be locally countable [18] if the associated approach system {A(x)}x∈X has a basis {B(x)}x∈X such that
each B(x) (x ∈ X) is countable.

Proposition 5.4. Every probabilistic metric space with respect to a continuous t-norm ∗ on [0, 1] is locally countable.

Proof. Let (X, α) be a probabilistic metric space and let B(x) = {λx,n | n ⩾ 1} for each x ∈ X. We show that {B(x)}x∈X
is a basis for {A(x)}x∈X , the associated approach system of (X, δα). Indeed, (B1) follows soon from Lemma 5.3,
and (B2) holds since for any n,m ⩾ 1, λx,n, λx,m ⩽ λx,max{m,n} is an immediate consequence of the monotonicity of
α(x, y,−) (x, y ∈ X). It remains to prove (B3). We proceed by contradiction. Suppose that φ ∈ A(x) is not dominated
by {λx,n}n⩾1. Then there exist ϵ > 0, ω < ∞ such that

An B {a ∈ X | min{φ(a), ω} > λx,n(a) + ϵ} , ∅

12



for all n ⩾ 1. However, since An ⊆ Am whenever m ⩽ n, we have

sup
n⩾1

δα(x, An) + ϵ = sup
n⩾1

sup
m⩾1

inf
a∈An

λx,m(a) + ϵ (Lemma 5.3)

⩽ sup
n⩾1

sup
m⩾1

inf
a∈Amax{n,m}

λx,max{n,m}(a) + ϵ (Amax{n,m} ⊆ An and λx,m ⩽ λx,max{n,m})

= sup
n⩾1

inf
a∈An

λx,n(a) + ϵ

= sup
n⩾1

inf
a∈An

(λx,n(a) + ϵ)

⩽ sup
n⩾1

inf
a∈An

min{φ(a), ω} (definition of An)

= min{sup
n⩾1

inf
a∈An

φ(a), ω}

⩽ min{sup
n⩾1

δα(x, An), ω}, (φ ∈ A(x))

which is a contradiction.

As it is known from [18, Proposition 3.4.3] that a topologically generated approach space is locally countable if
and only if its underlying topology is first-countable, the following corollary follows immediately from Proposition
5.4:

Corollary 5.5. Let (X, δ) be a topologically generated approach space. If the underlying topology of (X, δ) is not
first-countable, then (X, δ) is not ∗-metrizable for any continuous t-norm ∗ on [0, 1].

5.4. Uniform approach spaces

A generalized metric [15] (also quasi-metric [18]) on a set X is a map d : X × X // [0,∞] satisfying

d(x, x) = 0 and d(y, z) + d(x, y) ⩾ d(x, z)

for all x, y, z ∈ X, and it is called symmetric if d(x, y) = d(y, x) for all x, y ∈ X. We denote by

M(X)

the family of all generalized metrics on X. Let ρ ∈M(X) and D ⊆M(X). We say that ρ is locally dominated by D if

∀x ∈ X, ∀ϵ > 0, ∀ω < ∞, ∃ d ∈ D, ∀y ∈ X : min{ρ(x, y), ω} ⩽ d(x, y) + ϵ,

and
D̂ = {ρ ∈M(X) | ρ is locally dominated by D}

is called the local saturation of D.
Let (X, δ) be an approach space, and let {A(x)}x∈X be the associated approach system of (X, δ). The collection

G = {d ∈M(X) | ∀x ∈ X : d(x,−) ∈ A(x)}

is called the associated gauge of (X, δ). A collection B ⊆ G is called a basis for the associated gauge of (X, δ) if

G = B̂.

It is known that every generalized metric on X which is locally dominated by G belongs to G (see [18, Theorem 1.2.4]).
An approach space is said to be uniform [18] if it has a gauge basis consisting of symmetric generalized metrics.

Proposition 5.6. Every probabilistic metric space with respect to ∗M is a uniform approach space.
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Proof. Let (X, α) be a probabilistic metric space with respect to ∗M . For each n ⩾ 1, define a map

dn : X × X // [0,∞], dn(x, y) = λx,n(y) = inf
{
r ∈ [0,∞]

∣∣∣∣ α(x, y, r) > 1 −
1
n

}
.

It is clear that dn(x, x) = 0 and dn(x, y) = dn(y, x) for all x, y ∈ X. Let x, y, z ∈ X. If r, s ∈ [0,∞] satisfy

α(y, z, s) > 1 −
1
n

and α(x, y, r) > 1 −
1
n
,

then
α(x, z, r + s) ⩾ α(y, z, s) ∗M α(x, y, r) > 1 −

1
n
,

and consequently dn(y, z) + dn(x, y) ⩾ dn(x, z). Thus dn is a symmetric generalized metric on X. We show that

B = {dn | n ⩾ 1}

is a basis for the associated gauge G of (X, δα). On one hand, B̂ ⊆ G because it is clear that dn ∈ G for all n ⩾ 1. On
the other hand, let ρ ∈ G. For any x ∈ X, ϵ > 0, ω < ∞, since ρ(x,−) is dominated by B(x) = {λx,n | n ⩾ 1}, there
exists n ⩾ 1 such that

min{ρ(x, y), ω} ⩽ λx,n(y) + ϵ = dn(x, y) + ϵ,

which means that ρ is locally dominated by B, and consequently ρ ∈ B̂. Hence G ⊆ B̂.

Corollary 5.7. If an approach space is ∗-metrizable for every continuous t-norm ∗ on [0, 1], then it is uniform.

5.5. Classifications of approach spaces by probabilistic metrizability
The following two lemmas are easily verified with the aid of Theorem 4.5:

Lemma 5.8. If an approach space (X, δ) is not ∗0-metrizable for some continuous t-norm ∗0 on [0, 1], then it is not
∗M-metrizable, and consequently not ∗-metrizable for any continuous t-norm ∗ on [0, 1] with k∗ = 1.

Proof. Since (X, δ) is not ∗0-metrizable, it follows from Lemma 4.1 that (X, δ) cannot be ∗M-metrizable. Hence, by
Theorem 4.5(1), (X, δ) is not ∗-metrizable for any continuous t-norm ∗ on [0, 1] with k∗ = 1.

Lemma 5.9. If an approach space (X, δ) is ∗0-metrizable for some continuous t-norm ∗0 on [0, 1], then it is ∗P-
metrizable, and consequently ∗-metrizable for every continuous t-norm ∗ on [0, 1] with k∗ < 1.

Proof. If k∗0 = 1, then (X, δ) is ∗M-metrizable by Theorem 4.5(1), and thus ∗-metrizable for every continuous t-norm
∗ on [0, 1] by Lemma 4.1.

If k∗0 < 1, then from Theorem 4.5(2) we deduce that (X, δ) is ∗P-metrizable, and consequently ∗-metrizable for
every continuous t-norm ∗ on [0, 1] with k∗ < 1.

Therefore, we obtain the following classifications of approach spaces:

Proposition 5.10. Let (X, δ) be an approach space. Then exactly one of the following three statements is true:

(1) (X, δ) is ∗-metrizable for every continuous t-norm ∗ on [0, 1].

(2) (X, δ) is ∗P-metrizable, but not ∗M-metrizable; in other words, (X, δ) is ∗-metrizable for every continuous t-norm
∗ on [0, 1] with k∗ < 1, but not ∗-metrizable for any continuous t-norm ∗ on [0, 1] with k∗ = 1.

(3) (X, δ) is not ∗-metrizable for any continuous t-norm ∗ on [0, 1].

We have known that every metric approach space satisfies Proposition 5.10(1) (see Proposition 5.1), and every
topologically generated approach space whose underlying topology is not first-countable satisfies Proposition 5.10(3)
(see Corollary 5.5). However, it seems not easy to construct an approach space that satisfies 5.10(2). So, we end this
paper with the following:

Question 5.11. Can we find an example of an approach space that is ∗P-metrizable but not ∗M-metrizable?
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