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1. Introduction

The categorical foundation plays a crucial role in the study of fuzzy sets [30]. One of the most notable approaches
is the theory of quantale-valued sets developed by Höhle and his collaborators [16, 10, 12, 13, 14, 15], which extends
the theory of frame-valued sets initiated by Higgs [8, 9] and Fourman–Scott [5].

Explicitly, from every frameΩwe may construct a bicategory DΩ [29], which is actually a quantaloid [25, 27, 28].
Symmetric categories enriched in the quantaloid DΩ are precisely Ω-sets, and morphisms between Ω-sets are exactly
left adjoint DΩ-distributors. It is well known that the category

Ω-Set

of Ω-sets and their morphisms is a topos (see [5, Theorem 5.9 and Proposition 9.2]).
If we consider an (involutive) quantale [24, 22] Q as the table of truth values, the theory of Q-sets can be es-

tablished in the same way. More specifically, we may construct a quantaloid DQ [15, 23, 28] (see Proposition 4.2),
and define Q-sets as symmetric DQ-categories [15, 23] (see Definition 4.1 and Proposition 4.3). Thus, we obtain the
category

Q-Set

of Q-sets and left adjoint DQ-distributors. It is now natural to ask:

Question 1.1. Is Q-Set a topos?

This question was first proposed by Pu–Zhang (see [23, Question 7.2]) in the case that Q is a commutative and
divisible quantale (also known as GL-monoid [10]), where they conjectured that Q-Set is a topos only when Q is a
frame. The aim of this paper is to give an affirmative answer to their hypothesis (see Theorem 5.6):

• For a commutative and divisible quantale Q, the category Q-Set is a topos if, and only if, Q is a frame.

Therefore, the theory of topoi is unlikely to serve as the categorical foundation of Q-sets when the quantale Q is
non-idempotent.
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1



2. Divisible quantales

A commutative and unital quantale [21, 24, 4] is a commutative monoid (Q,&, 1) whose underlying set Q is a
complete lattice (with a top element ⊤ and a bottom element ⊥), such that

p &
(∨

i∈I

qi

)
=
∨
i∈I

p & qi

for all p, qi ∈ Q (i ∈ I). The right adjoint induced by the multiplication &, denoted by→,

(p & −) ⊣ (p→ −) : Q // Q,

satisfies
p & q ⩽ r ⇐⇒ p ⩽ q→ r

for all p, q, r ∈ Q. We say that Q is divisible if it satisfies one of the following equivalent conditions:

Proposition 2.1. (See [23, Proposition 2.1].) The following statements are equivalent:

(i) u = q & (q→ u) whenever u ⩽ q in Q.

(ii) v & (q→ u) = (q→ v) & u whenever u, v ⩽ q in Q.

(iii) u = q & p for some p ∈ Q whenever u ⩽ q in Q.

(iv) p ∧ q = p & (p→ q) for all p, q ∈ Q.

In this case, the unit 1 of the monoid (Q,&, 1) must be the top element ⊤ of the complete lattice Q.

Throughout this paper, we always assume that
(Q,&)

is a commutative and divisible quantale (also GL-monoid [10]).

Example 2.2. The following commutative and divisible quantales are well known:

(1) If Ω is a frame, then (Ω,∧) is a commutative and divisible quantale.

(2) If ∗ is a continuous t-norm [1, 17, 18] on the unit interval [0, 1], then ([0, 1], ∗) is a commutative and divisible
quantale.

(3) The Lawvere quantale ([0,∞],+) [19] is commutative and divisible.

Let q ∈ Q. We say that q is idempotent if q & q = q. In this case, it is easy to see that

p & q = p ∧ q

for all p ∈ Q.

Proposition 2.3. (See [11, Theorem 5.2].) The underlying complete lattice of Q is a frame. In particular, the idem-
potent elements of Q form a subframe of the frame (Q,∧).

By Proposition 2.1(ii), it makes sense to define

v ◦q u B v & (q→ u) = (q→ v) & u (2.i)

whenever u, v ⩽ q in Q.

Proposition 2.4. (See [23, Proposition 2.5].) For every q ∈ Q, (↓ q, ◦q) is a commutative and divisible quantale,
where ↓ q = {p ∈ Q | p ⩽ q}.
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Moreover, we say that p ∈ Q is idempotent relative to q ∈ Q [23] if p is idempotent in the quantale (↓ q, ◦q); that
is, if

p ⩽ q and p ◦q p = p & (q→ p) = p. (2.ii)

Hence, by Propositions 2.3 and 2.4, the set

Cq B {p ⩽ q | p & (q→ p) = p} (2.iii)

of idempotent elements relative to q is a subframe of the underlying frame of the quantale (↓ q, ◦q).

Proposition 2.5. Suppose that q ∈ Q and p ∈ Cq. Then p ∧ r = p & (q→ r) for all r ∈ Q.

Proof. On one hand, since 1 is the top element of Q and p ∈ Cq, it is clear that

p & (q→ r) ⩽ p & 1 = p and p & (q→ r) ⩽ q & (q→ r) ⩽ r.

On the other hand,
p ∧ r = p & (p→ r) = p & (q→ p) & (p→ r) ⩽ p & (q→ r),

where the first equality follows from Proposition 2.1(iv), and the second equality follows from p ∈ Cq and (2.iii).

For any p, q ∈ Q, define

p ⊑ q ⇐⇒ p ∈ Cq ⇐⇒ p ⩽ q and p & (q→ p) = p. (2.iv)

Proposition 2.6. ⊑ is a partial order on Q. Therefore, Cq is the principal ⊑-lower set generated by q ∈ Q.

Proof. ⊑ is clearly reflexive and antisymmetric. For the transitivity, suppose that p ⊑ q and q ⊑ r. Then

p = q & (q→ p) (p ⩽ q and Proposition 2.1(i))
= q & (r → q) & (q→ p) (q ⊑ r and (2.iv))
= (r → q) & p (p ⩽ q and Proposition 2.1(i))
= (r → q) & (q→ p) & p (p ⊑ q and (2.iv))
⩽ p & (r → p).

Since the reverse inequality is trivial, we conclude that p & (r → p) = p. Hence p ⊑ r.

Lemma 2.7. If p ⩽ q ⩽ r and p ⊑ r, then p ⊑ q.

Proof. This is an immediate consequence of p = p & (r → p) ⩽ p & (q→ p).

Lemma 2.8. If A ⊆ Q and a ⊑ q for all a ∈ A, then
∨

A ⊑ q.

Proof. Since a ⊑ q for all a ∈ A, by (2.iv) we have
∨

A ⩽ q and∨
A =
∨
a∈A

a & (q→ a) ⩽
∨
a∈A

a & (q→
∨

A) = (
∨

A) & (q→
∨

A).

Thus
∨

A ⊑ q.

Proposition 2.9. (Q,⊑) is a complete lattice.

Proof. Let A ⊆ Q. Since it is clear that ⊥ ⊑ q for all q ∈ Q, A has ⊥ as its ⊑-lower bound. We show that

⊓A B
∨
{q ∈ Q | ∀a ∈ A : q ⊑ a} (2.v)

is the ⊑-meet of A. First, ⊓A is a ⊑-lower bound of A by Lemma 2.8. Second, if q ⊑ a for all a ∈ A, then q ⩽ ⊓A ⩽ a
for all a ∈ A, and consequently q ⊑ ⊓A by by Lemma 2.7.

Note that the ⊑-join ⊔A of A ⊆ Q coincides with its ⩽-join:

Proposition 2.10.
∨

A = ⊔A for all A ⊆ Q.

Proof. It is clear that a ⩽
∨

A ⩽ ⊔A for all a ∈ A. Thus, by Lemma 2.7, we have a ⊑
∨

A for all a ∈ A, which means
that ⊔A ⩽

∨
A. Hence

∨
A = ⊔A.
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3. Quantaloid-enriched categories and their Cauchy completeness

A quantaloid [25] Q is a category whose hom-sets are complete lattices, such that the composition ◦ of Q-arrows
preserves suprema on both sides, i.e.,

v ◦
(∨

i∈I

ui

)
=
∨
i∈I

v ◦ ui and
(∨

i∈I

vi

)
◦ u =

∨
i∈I

vi ◦ u

for all Q-arrows u, ui : p // q, v, vi : q // r (i ∈ I). The corresponding right adjoints induced by the composition
maps

(− ◦ u) ⊣ (− ↙ u) : Q(p, r) //Q(q, r) and (v ◦ −) ⊣ (v↘ −) : Q(p, r) //Q(p, q)

satisfy
v ◦ u ⩽ w ⇐⇒ v ⩽ w↙ u ⇐⇒ u ⩽ v↘ w

for all Q-arrows u : p // q, v : q // r, w : p // r.
If a pair of Q-arrows u : p // q and v : q // p satisfy

1p ⩽ v ◦ u and u ◦ v ⩽ 1q,

we say that u and v form an adjunction in Q and denote it by u ⊣ v, where u is called a left adjoint of v, and v is a right
adjoint of u. In this case, it is easy to check that

v = u↘ 1q and u = 1q ↙ v.

Therefore, the right adjoint of a Q-arrow, when it exists, is necessarily unique. We define

u∗ B u↘ 1q : q // p (3.i)

for each Q-arrow u : p // q.

Lemma 3.1. (See [6, Proposition 2.3.4].) If u : p // q is a left adjoint in Q, then

v ◦ u = v↙ u∗ and u∗ ◦ w = u↘ w

for all Q-arrows v : q // r, w : r // q.

We say that Q is involutive if Q is equipped with an involution

(−)◦ : Qop //Q,

which is a functor satisfying
q◦ = q, u◦◦ = u and

(∨
i∈I

ui

)◦
=
∨
i∈I

u◦i

for all q ∈ obQ and Q-arrows u, ui : p // q (i ∈ I).
Given a small (i.e., obQ is a set) and involutive quantaloid Q, a Q-category (also category enriched in Q) [27]

consists of a set X, a type map |-| : X // obQ and a family of Q-arrows α(x, y) ∈ Q(|x|, |y|) (x, y ∈ X), such that

1|x| ⩽ α(x, x) and α(y, z) ◦ α(x, y) ⩽ α(x, z)

for all x, y, z ∈ X. Note that (X, α) has an underlying (pre)order given by

x ⩽ y ⇐⇒ |x| = |y| and 1|x| ⩽ α(x, y).

We say that (X, α) is separated (or skeletal) if the underlying order on X is a partial order. Moreover, (X, α) is
symmetric [7] if

α(x, y) = α(y, x)◦ (3.ii)
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for all x, y ∈ X.
A Q-functor f : (X, α) // (Y, β) between Q-categories is a map f : X // Y such that

|x| = | f x| and α(x, y) ⩽ β( f x, f y) (3.iii)

for all x, y ∈ X. Q-categories and Q-functors constitute a category

Q-Cat.

A Q-distributor φ : (X, α) //◦ (Y, β) between Q-categories is a map that assigns to each pair (x, y) ∈ X × Y a
Q-arrow φ(x, y) ∈ Q(|x|, |y|), such that

β(y, y′) ◦ φ(x, y) ◦ α(x′, x) ⩽ φ(x′, y′)

for all x, x′ ∈ X, y, y′ ∈ Y . With the pointwise order inherited from Q, the category

Q-Dist

of Q-categories and Q-distributors becomes a (large) quantaloid in which

ψ ◦ φ : (X, α) //◦ (Z, γ), (ψ ◦ φ)(x, z) =
∨
y∈Y

ψ(y, z) ◦ φ(x, y),

ξ ↙ φ : (Y, β) //◦ (Z, γ), (ξ ↙ φ)(y, z) =
∧
x∈X

ξ(x, z)↙ φ(x, y),

ψ↘ ξ : (X, α) //◦ (Y, β), (ψ↘ ξ)(x, y) =
∧
z∈Z

ψ(y, z)↘ ξ(x, z)

for all Q-distributors φ : (X, α) //◦ (Y, β), ψ : (Y, β) //◦ (Z, γ), ξ : (X, α) //◦ (Z, γ); the identity Q-distributor on
(X, α) is given by its hom α : (X, α) //◦ (X, α).

Adjoint Q-distributors are precisely adjunctions in the quantaloid Q-Dist. Each Q-functor f : (X, α) // (Y, β)
induces a pair of adjoint Q-distributors f♮ ⊣ f ∗

♮
, given by

f♮ : (X, α) //◦ (Y, β), f♮(x, y) = β( f x, y) and f ∗♮ : (Y, β) //◦ (X, α), f ∗♮ (y, x) = β(y, f x).

It is straightforward to verify the following lemma:

Lemma 3.2. A Q-functor f : (X, α) // (Y, β) is fully faithful in the sense that

α(x, x′) = β( f x, f x′)

for all x, x′ ∈ X if, and only if, f ∗
♮
◦ f♮ = α.

For each q ∈ obQ, let {q} denote the (necessarily symmetric) one-object Q-category whose only object has type
q and hom 1q. For every Q-category (X, α), it is easy to see that

α(x,−) ⊣ α(−, x) : (X, α) //◦ {|x|} (3.iv)

for all x ∈ X. In fact, considering the Q-functor

x : {|x|} // (X, α) (3.v)

targeting at x, it is clear that α(x,−) = x♮ and α(−, x) = x∗
♮
.

A Q-category (X, α) is Cauchy complete if every left adjoint Q-distributor

µ : {q} //◦ (X, α)

5



is representable; that is, there exists x ∈ X, called the representation of µ, such that µ = α(x,−).
Let (X, α) be a Q-category. Define

X̂ B {µ : {q} //◦ (X, α) | µ is a left adjoint in Q-Dist, q ∈ obQ} (3.vi)

and
α̂(µ, λ) B λ↘ µ = λ∗ ◦ µ = (λ↘ α) ◦ µ (3.vii)

for all µ, λ ∈ X̂, where the last two equalities follow from Lemma 3.1 and Equation (3.i), respectively. Then (X̂, α̂)
is a separated and Cauchy complete Q-category, called the Cauchy completion of (X, α) (cf. [2] and [23, Proposition
4.12]). There is a fully faithful Q-functor

y : (X, α) // (X̂, α̂), yx = α(x,−), (3.viii)

which is also injective when (X, α) is separated. Moreover, the assignment (X, α) 7→ (X̂, α̂) is functorial; that is, there
is a functor

(̂−) : Q-Cat //Q-CcCat (3.ix)

sending each Q-functor f : (X, α) // (Y, β) to

f̂ : (X̂, α̂) // (Ŷ , β̂), f̂µ = f♮ ◦ µ, (3.x)

where Q-CcCat is the full reflective subcategory of Q-Cat consisting of separated and Cauchy complete Q-categories
(see [27, Proposition 7.14]). Hence, there is a bijection

Q-CcCat((X̂, α̂), (Y, β)) � Q-Cat((X, α), (Y, β)) (3.xi)

natural in (X, α) ∈ Q-Cat and (Y, β) ∈ Q-CcCat. In particular, the transpose of a Q-functor f : (X, α) // (Y, β) is

f : (X̂, α̂) // (Y, β), (3.xii)

with fµ being the representation of f̂µ (see (3.x)) for all µ ∈ X̂.
In this paper we are concerned with the full subcategory

Q-CcSymCat

of Q-Cat, whose objects are separated, symmetric and Cauchy complete Q-categories. For later use, we point out
that equalizers in Q-CcSymCat are formulated in the same way as in Q-Cat (cf. [26, Remark 2.4(3)]):

Proposition 3.3. The equalizer of f , g : (X, α) // (Y, β) in Q-CcSymCat is given by

E = {x ∈ X | f x = gx}

equipped with the restriction of the Q-category structure α on E.

Proof. Let σ = α|(E × E). By [26, Remark 2.4(3)], it suffices to show that (E, σ) is Cauchy complete. Let
µ : {q} //◦ (E, σ) be a left adjoint Q-distributor. Considering the inclusion Q-functor j : (E, σ) �

�
// (X, α), we have a

left adjoint Q-distributor
j♮ ◦ µ : {q} //◦ (X, α).

Since (X, α) is Cauchy complete, there exists x ∈ X such that j♮ ◦ µ = α(x,−). It follows that

β( f x,−) = f♮ ◦ α(x,−) = f♮ ◦ j♮ ◦ µ = g♮ ◦ j♮ ◦ µ = g♮ ◦ α(x,−) = β(gx,−),

where the third equality follows from f j = g j. Thus, the separatedness of (Y, β) forces f x = gx, and consequently
x ∈ E. Therefore,

µ = σ ◦ µ = j∗♮ ◦ j♮ ◦ µ = j∗♮ ◦ α(x,−) = α(x, j−) = σ(x,−),

where the second equality follows from Lemma 3.2, as desired.
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4. Quantale-valued sets as enriched categories

We are now ready to introduce the key notion of this paper:

Definition 4.1. (See [10, 12, 15, 23].) A Q-set a set X equipped with a map

α : X × X // Q,

such that

(S1) α(x, y) ⩽ α(x, x) ∧ α(y, y),

(S2) α(x, y) = α(y, x),

(S3) α(y, z) & (α(y, y)→ α(x, y)) ⩽ α(x, z)

for all x, y, z ∈ X.

In order to exhibit Q-sets as enriched categories, we need the following quantaloid constructed from Q:

Proposition 4.2. (See [15, 23, 28].) The following data define an involutive quantaloid DQ:

• ob DQ = Q;

• DQ(p, q) = {u ∈ Q | u ⩽ p ∧ q};

• the composite of u ∈ DQ(p, q) and v ∈ DQ(q, r) is given by v ◦q u (see (2.i));

• the identity DQ-arrow on q ∈ Q is q itself;

• each hom-set DQ(p, q) is equipped with the order inherited from Q;

• the involution of u : p // q in DQ is given by u : q // p.

From the definition we see that a DQ-category consists of a set X, a map |-| : X // Q and a map α : X × X // Q
such that

α(x, y) ⩽ |x| ∧ |y|, |x| ⩽ α(x, x) and α(y, z) & (|y| → α(x, y)) ⩽ α(x, z)

for all x, y, z ∈ X. Note that the first and the second inequalities above force

α(x, x) = |x| (4.i)

for all x ∈ X. Thus, a DQ-category is exactly given by a map α : X × X // Q satisfying (S1) and (S3) of Definition
4.1, and a Q-set is precisely a DQ-category satisfying (S2). Therefore:

Proposition 4.3. (See [15, Proposition 6.3].) A Q-set is precisely a symmetric DQ-category.

We denote by
Q-Set

the category whose objects are Q-sets, and whose morphisms are left adjoint DQ-distributors.

Remark 4.4. If Q = Ω is a frame, then we obtain the well-known categoryΩ-Set as considered in [5] and [3, Sections
2.8 and 2.9]. Since Ω-Set is equivalent to the category Sh(Ω) of sheaves on Ω (cf. [5, Theorem 5.9] and [3, Theorem
2.9.8]), it follows that Ω-Set is a topos (see [5, Proposition 9.2] and and [3, Example 5.2.3]).

Given a Q-set (X, α), a left adjoint DQ-distributor µ : {q} //◦ (X, α) is usually called a singleton [15, 23], and it
can be characterized as follows:

Proposition 4.5. (See [15, Definition 6.4] and [23, Definition 5.3].) A singleton on a Q-set (X, α) is precisely a map
µ : X // Q such that
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(ss1) µ(x) ⩽ α(x, x),

(ss2) µ(x) & (α(x, x)→ α(x, y)) ⩽ µ(y),

(ss3) |µ| ⩽
∨
x∈X

µ(x) & (α(x, x)→ µ(x)),

(ss4) µ(x) & (|µ| → µ(y)) ⩽ α(x, y)

for all x, y ∈ X, where |µ| =
∨
x∈X

µ(x). In this case, it necessarily holds that µ∗(x) = µ(x) for all x ∈ X.

Note that Q-Set and DQ-CcSymCat are exactly the categories SM-Modad and CM-Set in [23], respectively.
Hence:

Proposition 4.6. (See [23, Proposition 5.7(2)].) The category Q-Set is equivalent to the full subcategory

DQ-CcSymCat

of DQ-Cat whose objects are separated and Cauchy complete Q-set.

From the construction of DQ (Proposition 4.2) and [26, Remark 2.4(1)] we see that the terminal object of the
category DQ-Cat is given by

(Q,∧),

whose underlying set is Q equipped with the identity map as its type map, and whose hom-arrows are given by p ∧ q
for all p, q ∈ Q. The following proposition tells us that (Q,∧) is also the terminal object of DQ-CcSymCat:

Proposition 4.7. (See [23, Example 4.8].) (Q,∧) is a separated and Cauchy complete Q-set.

The following proposition guarantees that the Cauchy completion of a Q-set is also a Q-set:

Proposition 4.8. (See [23, Proposition 5.4].) The Cauchy completion (X̂, α̂) of a symmetric DQ-category (X, α) is
also symmetric.

By Proposition 4.5 it is straightforward to check that

p ⊑ q ⇐⇒ p is a singleton on the one-element Q-set {q}. (4.ii)

Thus, the following characterization of the set Cq (see (2.iii)) can be deduced from (3.vii) in combination with Propo-
sitions 2.5 and 4.2:

Proposition 4.9. (See [23, Example 4.13].) For each q ∈ Q, the Cauchy completion of the one-element Q-set {q} is
precisely Cq equipped with the Q-set structure inherited from (Q,∧).

For p, q ∈ Q, since a DQ-functor must preserve types, a DQ-functor from (Cp,∧) to (Cq,∧), whenever it exists, is
necessarily neutral on every element of Cp. Hence, there is at most one DQ-functor from (Cp,∧) to (Cq,∧), which can
only be the inclusion map and exists only when Cp ⊆ Cq. Correspondingly, the order ⊑ may be described as follows:

Proposition 4.10. Let p, q ∈ Q. Then p ⊑ q if, and only if, there exists a (unique) DQ-functor from (Cp,∧) to (Cq,∧).

Proof. If p ⊑ q, then by Proposition 2.6, every r ∈ Cp belongs to Cq; that is, Cp ⊆ Cq. Thus, the inclusion map is the
unique DQ-functor from (Cp,∧) to (Cq,∧). Conversely, if the inclusion map is a DQ-functor from (Cp,∧) to (Cq,∧),
then p ∈ Cq, which means that p ⊑ q.

The following proposition reveals that in a separated and Cauchy complete Q-set (X, α), an element x ∈ X has a
unique “restriction” on each p ⊑ α(x, x):
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Proposition 4.11. Let (X, α) be a separated and Cauchy complete Q-set. For each x ∈ X with α(x, x) = q, if p ⊑ q,
then there exists a unique element xp ∈ X such that

α(xp, xp) = p and α(xp, y) = α(x, y) ∧ p (4.iii)

for all y ∈ X.

Proof. For each y ∈ Y , since α(x, y) ⩽ α(x, x) = q and p is idempotent in the quantale (↓ q, ◦q) (see Proposition 2.4
and (2.ii)), we have

α(x, y) ∧ p = α(x, y) ◦q p.

Thus, α(x,−) ∧ p is the composite of singletons

{p} {q}
p
// {q} (X, α),

α(x,−)
//◦ ◦

which is again a singleton on (X, α). Hence, the existence and uniqueness of xp ∈ X satisfying (4.iii) follow from the
Cauchy completeness and separatedness of (X, α).

Proposition 4.12. Let q ∈ Q, and let (Y, β) be a separated and Cauchy complete Q-set. Then every DQ-functor from
(Cq,∧) to (Y, β) is uniquely determined by an element y ∈ Y with β(y, y) = q, which is exactly

y : (Cq,∧) // (Y, β), p 7→ yp. (4.iv)

Proof. Since a DQ-functor from {q} to (Y, β) is essentially an element y ∈ Y with β(y, y) = q, the conclusion is an
immediate consequence of (3.xi) and (3.xii) together with Propositions 4.9 and 4.11.

Proposition 4.13. Let q ∈ Q, and let (Y, β) be a Q-set. Then every y ∈ Y with β(y, y) = q induces a DQ-functor

ŷ : (Cq,∧) // (Ŷ , β̂), p 7→ β(y,−) ∧ p. (4.v)

Proof. Note that ŷ is obtained by applying (3.x) to the DQ-functor

y : {q} // (Y, β)

targeting at y. Indeed, by (3.x) we have

(̂yp)(y′) = y♮(y′) ◦q p = β(y, y′) ◦q p = β(y, y′) ∧ p

for all p ∈ Cq, y′ ∈ Y , where the last equality holds because β(y, y′) ⩽ β(y, y) = q and p is idempotent in the quantale
(↓ q, ◦q) (see Proposition 2.4).

5. Q-Set is a topos only if Q is a frame

Let us recall the following facts in a topos:

Proposition 5.1. (see [20, Proposition IV.1.2].) Every monic arrow in a topos is an equalizer.

Proposition 5.2. (see [20, Proposition IV.6.3] and [3, Proposition 5.10.2].) Let E be a topos. For each X ∈ ob E ,
the partially ordered set Sub X is a lattice, in which the intersection U ∩ V of subobjects U, V of X is given by the
pullback on the left below, and their union U ∪ V is given by the pushout on the right below.

U X// //

U ∩ V

U
��

U ∩ V V// V

X

��

��

V U ∪ V//

U ∩ V

V

��

��

U ∩ V U// // U

U ∪ V
��

9



Lemma 5.3. Suppose that DQ-CcSymCat is a topos. Then for each q ∈ Q, every subobject of (Cq,∧) in DQ-CcSymCat
is of the form (Cp,∧) for some p ⊑ q.

Proof. By Propositions 3.3 and 5.1, we may assume that a subobject of (Cq,∧) in DQ-CcSymCat is a subset S ⊆ Cq

equipped with the inherited DQ-category structure ∧. We show that S = Cp for some p ⊑ q.
First, S is a ⊑-lower set. Suppose that r ∈ S and r′ ⊑ r. Then

µ : S // Q, µ(s) = s ∧ r′

is a singleton on (S ,∧). Indeed, it is straightforward to verify that µ satisfies (ss1), (ss2) and (ss4) of Proposition 4.5.
For (ss3), from r′ ⊑ r and (2.iv) we see that

|µ| = r′ = r′ & (r → r′) = (r ∧ r′) & (r → (r ∧ r′)) ⩽
∨
s∈S

(s ∧ r′) & (s→ (s ∧ r′)).

Since (S ,∧) lies in DQ-CcSymCat, it is Cauchy complete, and thus there exists s0 ∈ S such that µ(s) = s ∧ s0, i.e.,

s ∧ r′ = s ∧ s0, (5.i)

for all s ∈ S . In particular, setting s = r and s = s0 respectively in (5.i) we have

r′ = r ∧ r′ = r ∧ s0 and s0 ∧ r′ = s0,

which imply that r′ ⩽ s0 and s0 ⩽ r′, respectively. Hence r′ = s0 ∈ S .
Second, S has a ⊑-maximum element. By checking the conditions of Proposition 4.5 we may also see that

λ : S // Q, λ(s) = s

is a singleton on (S ,∧). Thus, the Cauchy completeness of (S ,∧) guarantees the existence of p ∈ S such that
λ(s) = s ∧ p, i.e., s = s ∧ p for all s ∈ S . Thus s ⩽ p for all s ∈ S ; that is, p is the ⩽-maximum element of S , which
is also the ⊑-maximum element of S (see Proposition 2.10).

Lemma 5.4. Suppose that DQ-CcSymCat is a topos. Then

p ⊓ q = p ∧ q

for all p, q ∈ Q.

Proof. By Propositions 3.3, 4.9 and 5.1, (Cp,∧) and (Cq,∧) are subobjects of (Q,∧) in DQ-CcSymCat. Our strategy
is to explore their union in Sub(Q,∧) under the guidance of Proposition 5.2.

Step 1. The intersection of (Cp,∧) and (Cq,∧) in Sub(Q,∧) is (Cp⊓q,∧). It suffices to show that the inner square
of the diagram

(Cp,∧) (Q,∧)//

(Cp⊓q,∧)

(Cp,∧)
��

(Cp⊓q,∧) (Cq,∧)// (Cq,∧)

(Q,∧)
��

(X, α)

(Cq,∧)

g

&&

(X, α)

(Cp⊓q,∧)
h

$$

(X, α)

(Cp,∧)

f

##

(5.ii)

is a pullback. In fact, the commutativity of the inner square of (5.ii) is an immediate consequence of Propositions
2.9 and 4.10, in which every arrow is the inclusion DQ-functor. Moreover, if the outer quadrilateral of (5.ii) is
commutative, then

hx B f x = gx ∈ Cp ∩Cq
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for all x ∈ X. Thus, it follows from (2.iv) and Proposition 2.9 that hx ⊑ p ⊓ q, i.e., hx ∈ Cp⊓q. Therefore, h is the
unique map making the triangles in (5.ii) commutative, and its DQ-functoriality follows immediately from that of f
and g.

Step 2. The union of (Cp,∧) and (Cq,∧) in Sub(Q,∧) is given by the Cauchy completion of the Q-set (Z, γ) with

Z = {p, q} and γ(p, p) = p, γ(q, q) = q, γ(p, q) = γ(q, p) = p ⊓ q.

To this end, it suffices to show that the inner square of the diagram

(Cp,∧) (Z, γ)
p̂

//

(Cp⊓q,∧)

(Cp,∧)
��

(Cp⊓q,∧) (Cq,∧)// (Cq,∧)

(Z, γ)

q̂
��

(Cp,∧)

(Y, β)y ..

(Cq,∧)

(Y, β)

z

��

(Ẑ, γ̂)

(Y, β)
h $$

(5.iii)

is a pushout, where p̂ and q̂ are the DQ-functors defined by applying (3.x) to the inclusion DQ-functors {p} �
�
// (Z, γ)

and {q} �
�
// (Z, γ) targeting at p and q, respectively.

First, the inner square of (5.iii) is commutative. Suppose that r ∈ Cp⊓q. Then r ⊑ p⊓ q ⊑ p. Thus, it follows from
Proposition 4.13 that

( p̂r)(p) = γ(p, p) ∧ r = p ∧ r = r = (p ⊓ q) ∧ r = γ(p, q) ∧ r = ( p̂r)(q).

Similarly, (̂qr)(p) = (̂qr)(q) = r. Hence p̂r = q̂r, as desired.
Second, suppose that the outer quadrilateral of (5.iii) is commutative, where y and z are the DQ-functors deter-

mined by y ∈ Y with β(y, y) = p and z ∈ Y with β(z, z) = q, respectively (see Proposition 4.12). Then, Proposition
4.12 implies that

yr = yr = zr = zr

for all r ∈ Cp⊓q. We show that the transpose h : (Ẑ, γ̂) // (Y, β) (see (3.xi) and (3.xii)) of

h : (Z, γ) // (Y, β), hp = y and hq = z

is the unique DQ-functor such that the two triangles in (5.iii) are commutative. Indeed, by applying the functor (̂−) to
the commutative triangles

{p} (Z, γ)� � p
//{p}

(Y, β)

y
&&

(Z, γ) {q}oo
q

? _(Z, γ)

(Y, β)

h
��

{q}

(Y, β)

z
xx

we obtain that
ĥ p̂ = ŷ and ĥq̂ = ẑ.

Then, by the definition of (−) (see (3.xii)) we conclude that

hp̂ = y and hq̂ = z.

For the uniqueness of h, suppose that k : (Ẑ, γ̂) // (Y, β) is the transpose of k : (Z, γ) // (Y, β) (see (3.xi) and (3.xii))
and satisfies kp̂ = y and kq̂ = z. Then it follows soon from the adjoint property (i.e., the natural bijection (3.xi)) that
kp = y and kp = z. Hence k = h.

Step 3. Since (Ẑ, γ̂) is the union of (Cp,∧) and (Cq,∧) in Sub(Q,∧), it is also a subobject of (Q,∧). As (Z, γ) is
a clearly subobject of (Ẑ, γ̂) (see (3.viii)), we conclude that (Z, γ) is a subobject of (Q,∧). Therefore, it follows from
Propositions 3.3 and 5.1 that

p ⊓ q = γ(p, q) = p ∧ q,

which completes the proof.
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Proposition 5.5. DQ-CcSymCat is a topos if, and only if, Q is a frame.

Proof. The “if” part is a direct consequence of Remark 4.4 and Proposition 4.6. For the “only if” part, suppose that
DQ-CcSymCat is a topos. Setting p = 1 in Lemma 5.4 we obtain that q ⊓ 1 = q ∧ 1 = q, and consequently q ⊑ 1 for
all q ∈ Q. By (2.iv), this means that

q & q = q & (1→ q) = q

for all q ∈ Q; that is, every element of Q is idempotent. Hence Q is a frame.

Therefore, the main result of this paper is an immediate consequence of Propositions 4.6 and 5.5:

Theorem 5.6. Q-Set is a topos if, and only if, Q is a frame.
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