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Abstract

Let Q be a commutative and unital quantale. By a Q-map we mean a left adjoint in the quantaloid of sets and Q-
relations, and by a partial Q-map we refer to a Kleisli morphism with respect to the maybe monad on the category
Q-Map of sets and Q-maps. It is shown that every Q-map is symmetric if and only if Q is weakly lean, and that every
Q-map is exactly a map in Set if and only Q is lean. Moreover, assuming the axiom of choice, it is shown that the
category of sets and partial Q-maps is monadic over Q-Map.
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1. Introduction

Given (crisp) sets X and Y , a partial map f from X to Y is a map from a (possibly empty) subset X′ ⊆ X to Y . For
the category

Set∂

of (crisp) sets and partial maps, the following results are well known [17, 21]:

• Set∂ is equivalent to the coslice category {⋆}/Set, where {⋆} is the singleton set.

• The forgetful functor U : {⋆}/Set // Set admits a left adjoint, which carries a set X to the inclusion map

{⋆}
� � // X ⨿ {⋆},

where X ⨿ {⋆} refers to the disjoint union of X and the singleton set.

• The induced monad on Set is called the maybe monad, whose Eilenberg-Moore and Kleisli categories are
{⋆}/Set and Set∂, respectively (cf. [21, Examples 5.1.4 and 5.2.10]).

Therefore, the Eilenberg-Moore and Kleisli categories of the maybe monad on Set are equivalent. In particular,
{⋆}/Set and Set∂ are both monadic over Set.

It is then natural to ask whether it is possible to formulate the notion of partial map, and establish the above results
in the fuzzy setting. To achieve this goal, we note that there is a very general framework in category theory for partial
maps; see, e.g., [17, Exercise IV.2.11]. Explicitly, let C be a category with finite coproducts. For every C-object A, the
forgetful functor from the coslice category A/C to C, i.e.,

U : A/C // C, (A→ C) 7→ C, (1.i)

admits a left adjoint, given by
C 7→ (A→ A ⨿C). (1.ii)
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It is not difficult to see that the Eilenberg-Moore category of the induced monad is isomorphic to A/C, and thus A/C
is monadic over C. The maybe monad on Set is simply obtained by setting C = Set and A = {⋆}.

Considering a non-trivial, commutative and unital quantale [22] Q as the table of truth values and following the
terminology of [10, Definition 2.3.1], by a Q-map (i.e., a map valued in the quantale Q) we mean a left adjoint in the
quantaloid [23, 26]

Q-Rel

of sets and Q-relations; that is, a Q-relation ζ : X //7 Y admitting a right adjoint in Q-Rel, with the value

ζ(x, y)

interpreted as the extent of y being the image of x under the map ζ (see Remark 3.2 for detailed elaboration). In Section
3 we prove the following results (Theorems 3.12 and 3.15), which reveal that for a general quantale Q, Q-maps are
essentially different from crisp maps between sets:

• Every Q-map is symmetric (in the sense that the right adjoint is given by its opposite) if, and only if, Q is weakly
lean. This is a discrete counterpart of [10, Proposition 3.5.3].

• Every Q-map is the graph of a map in Set (so that the category Q-Map of sets and Q-maps is isomorphic to
Set) if, and only if, Q is lean. This is a generalization of [12, Proposition III.1.2.1] to the non-integral setting.

With the above preparations we are now able to postulate the notion of partial Q-map through the maybe monad
on the category Q-Map, which is obtained by setting C = Q-Map and A = {⋆} in (1.i) and (1.ii). Explicitly, by a
partial Q-map ζ from X to Y we refer to a Q-map

ζ : X //7 Y ⨿ {⋆},

which is precisely a morphism in the Kleisli category of the maybe monad on Q-Map, with the value

ζ(x, ⋆)

interpreted as the degree that x has no image under the map ζ (see Remark 4.7 for detailed elaboration). The main
result of Section 4, Theorem 4.10, is to show that assuming the axiom of choice, the Eilenberg-Moore category (i.e.,
the coslice category {⋆}/Q-Map) and the Kleisli category (i.e., the category Q-Map∂ of sets and partial Q-maps) of
the maybe monad on Q-Map are equivalent, so that {⋆}/Q-Map and Q-Map∂ are both monadic over Q-Map. It is
noteworthy to point out that this result may not hold in the general categorical setting (i.e., the monad induced by
(1.i) and (1.ii) for a general category C), and an equivalent statement of the axiom of choice given in [9] (i.e., every
non-empty set admits a group structure) plays a vital role in its proof.

2. Quantales

Throughout, let
Q = (Q,&, k)

denote a non-trivial, commutative and unital quantale [18, 22, 7], which consists of a complete lattice Q (with the top
and bottom elements denoted by ⊤ and ⊥, respectively), an element k ∈ Q and a binary operation & on Q, such that

• ⊥ < k,

• (Q,&, k) is a commutative monoid with unit k, and

• p &
(∨

i∈I

qi

)
=
∨
i∈I

p & qi for all p, qi ∈ Q (i ∈ I).

2



The right adjoint induced by the multiplication &, denoted by→,

(p & −) ⊣ (p→ −) : Q // Q,

satisfies
p & q ⩽ r ⇐⇒ p ⩽ q→ r

for all p, q, r ∈ Q.
We say that Q is integral if k = ⊤, and Q is divisible [13, 8] if

d ⩽ q =⇒ ∃p ∈ Q : d = p & q

for all d, q ∈ Q. In particular, divisible quantales are necessarily integral (see, e.g., [20, Proposition 2.1]).

Example 2.1. We list here some examples of commutative and unital quantales that will be concerned later:

(1) On the three-chain C3 = {⊥, k,⊤} we have the quantale (C3,&, k), with

⊤ & ⊤ = ⊤

and the other multiplications being trivial.

(2) Every frame is a divisible quantale. In particular, the partially ordered sets

F1 = {⊥, p, q,⊤} and F2 = {⊥, p, q, r,⊤}

illustrated by the Hasse diagrams

p q

⊤

p

⊤

qp

⊥

p qq

⊥

and p q

r

p

r

q

r

⊤

p

⊥

p qq

⊥

,

respectively, are both frames.

(3) On the diamond lattice M3 given by the Hasse diagram

a bb k

⊤

a

⊤

b

⊤

ka ba

⊥

b kb

⊥

k

⊥

we have the quantale (M3,&, k), with

a & a = b, b & b = a, a & b = k and a & ⊤ = b & ⊤ = ⊤.

(4) Every continuous t-norm [14, 15, 1] ∗ on the unital interval [0, 1] gives rise to a divisible quantale ([0, 1], ∗, 1).

(5) Let [−∞,∞] be the extended real line equipped with the order “⩾”. Then ([−∞,∞],+, 0) is a quantale, which
includes the Lawvere quantale [16] ([0,∞],+, 0) as a divisible subquantale.

(6) Every commutative monoid (M,&, k) induces a free quantale (PM,&, {k}), where PM is the powerset of M, and

A & B = {a & b | a ∈ A, b ∈ B}

for all A, B ⊆ M.
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A quantaloid [23, 25, 26] Q is a category with a class of objects Q0 in which Q(p, q) is a complete lattice for all
p, q ∈ Q0, such that the composition ◦ of morphisms preserves joins on both sides, i.e.,

v ◦
(∨

i∈I

ui

)
=
∨
i∈I

(v ◦ ui) and
(∨

i∈I

vi

)
◦ u =

∨
i∈I

(vi ◦ u)

for all u, ui ∈ Q(p, q), v, vi ∈ Q(q, r) (i ∈ I). The corresponding right adjoints induced by the compositions

(− ◦ u) ⊣ (− ↙ u) : Q(p, r) //Q(q, r) and (v ◦ −) ⊣ (v↘ −) : Q(p, r) //Q(p, q)

satisfy
v ◦ u ⩽ w ⇐⇒ v ⩽ w↙ u ⇐⇒ u ⩽ v↘ w

for all Q-arrows u : p // q, v : q // r, w : p // r.
An adjunction in a quantaloid Q is a pair of Q-arrows u : p // q and v : q // p, denoted by u ⊣ v, such that

1p ⩽ v ◦ u and u ◦ v ⩽ 1q.

Proposition 2.2. If u ⊣ v : q // p in a quantaloid Q, then

v = u↘ 1q and u = 1q ↙ v.

Proof. Note that 1p ⩽ v ◦ u implies that u ↘ 1q ⩽ v ◦ u ◦ (u ↘ 1q) ⩽ v, and the reverse inequality is an immediate
consequence of u ◦ v ⩽ 1q. Therefore v = u↘ 1q, and u = 1q ↙ v can be proved analogously.

Therefore, the right adjoint of a Q-arrow, when it exists, is necessarily unique. In what follows we define

u∗ := u↘ 1q : q // p (2.i)

for each Q-arrow u : p // q. u is called a map in Q [10] if u ⊣ u∗, and we denote by

Map(Q)

the subcategory of Q whose objects are the same as Q, and whose morphisms are maps in Q.
Since it always holds that u ◦ u∗ = u ◦ (u↘ 1q) ⩽ 1q, we immediately obtain the following lemma:

Lemma 2.3. A Q-arrow u : p // q is a map in Q if, and only if, 1p ⩽ u∗ ◦ u.

Given sets X, Y , a Q-relation φ : X //7 Y is a function φ : X × Y // Q. We denote by

φop : Y //7 X, φop(y, x) = φ(x, y)

the opposite of a Q-relation φ : X //7 Y . Sets and Q-relations constitute a quantaloid

Q-Rel,

in which the local order is inherited from Q, and

ψ ◦ φ : X //7 Z, (ψ ◦ φ)(x, z) =
∨
y∈Y

ψ(y, z) & ψ(x, y), (2.ii)

ξ ↙ φ : Y //7 Z, (ξ ↙ φ)(y, z) =
∧
x∈X

(φ(x, y)→ ξ(x, z)), (2.iii)

ψ↘ ξ : X //7 Y, (ψ↘ ξ)(x, y) =
∧
z∈Z

ψ(y, z)→ ξ(x, z) (2.iv)

for all Q-relations φ : X //7 Y , ψ : Y //7 Z, ξ : X //7 Z; the identity Q-relation on X is given by

id : X //7 X, idX(x, y) =

k if x = y,
⊥ else.
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Given Q-relations φ : X //7 Y and ψ : Z //7 W, their disjoint union

ψ ⨿ φ : X ⨿ Z //7 Y ⨿W

is given by

(ψ ⨿ φ)(x, y) = φ(x, y), (ψ ⨿ φ)(z,w) = ψ(z,w) and (ψ ⨿ φ)(x,w) = (ψ ⨿ φ)(z, y) = ⊥

for all x ∈ X, z ∈ Z, y ∈ Y , w ∈ W. It is straightforward to verify that

(ψ ◦ φ) ⨿ ξ = (ψ ⨿ ξ) ◦ (φ ⨿ ξ) (2.v)

for all Q-relations φ : X //7 Y , ψ : Y //7 Z, ξ : Z //7 W.

3. Quantale-valued maps

Definition 3.1. Let X, Y be (crisp) sets. A Q-map ζ from X to Y is a map ζ : X //7 Y in the quantaloid Q-Rel.

Sets and Q-maps constitute a category

Q-Map :=Map(Q-Rel).

Remark 3.2. To justify Definition 3.1, let ζ : X //7 Y be a Q-map. First of all, the value

ζ(x, y)

is interpreted as the extent of y being the image of x under the map ζ. By Equations (2.i) and (2.iv), the value

ζ∗(y, x) = (ζ ↘ idY )(y, x) =
∧
z∈Y

ζ(x, z)→ idY (y, z) (3.i)

also represents the extent of y being the image of x under the map ζ, since the last expression of (3.i) may be understood
as:

• For each z ∈ Y , if z is the image of x under ζ, then z is equal to y.

Therefore, the adjunction ζ ⊣ ζ∗ can be translated as follows:

• For every x ∈ X, there exists y ∈ Y such that y is the image of x under ζ; because idX ⩽ ζ∗ ◦ ζ means that

k ⩽
∨
y∈Y

ζ∗(y, x) & ζ(x, y) (3.ii)

for all x ∈ X.

• If y, z ∈ Y are both the images of x under ζ, then y is equal to z; because ζ ◦ ζ∗ ⩽ idY means that∨
x∈X

ζ(x, z) & ζ∗(y, x) ⩽ idY (y, z) (3.iii)

for all y, z ∈ Y .

Remark 3.3. The notion of Q-map should be carefully distinguished from related notions in the literature:

• Fuzzy mappings in [2] and fuzzifying functions in [6] are precisely our Q-relations.

• When Q is an integral quantale, every Q-map is a fuzzy function with respect to idX and idY in the sense of
[24, 3] or [4, 5], but not vice versa.
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• When Q is a frame, Q-maps are exactly Q-valued fuzzy functions in the sense of [19].

Lemma 3.4. Let ζ : X //7 Y be a Q-map. Then

(ζ∗ ◦ ζ)(x, x) = k and ζ(x, z) & ζ∗(y, x) = ⊥

for all x ∈ X, y, z ∈ Y with y , z.

Proof. The first equality follows from

k = idX(x, x) ⩽ (ζ∗ ◦ ζ)(x, x) =
∨
y∈Y

ζ∗(y, x) & ζ(x, y)

=
∨
y∈Y

ζ(x, y) & ζ∗(y, x) ⩽
∨
y∈Y

(ζ ◦ ζ∗)(y, y) ⩽
∨
y∈Y

idY (y, y) = k,

and the second equality holds because

ζ(x, z) & ζ∗(y, x) ⩽ (ζ ◦ ζ∗)(y, z) ⩽ idY (y, z) = ⊥.

Given a Q-map ζ : X //7 Y , it is obvious that the restriction of ζ on any (crisp) subset W ⊆ X induces a Q-map
ζ |W : W //7 Y . Moreover, ζ can also be extended to any (crisp) superset Z ⊇ Y:

Lemma 3.5. Let ζ : X //7 Y be a Q-map, and let Z ⊇ Y. Then

ζ̃ : X //7 Z, ζ̃(x, z) =

ζ(x, z) if z ∈ Y,
⊥ if z < Y

is the unique Q-map from X to Z satisfying

ζ̃(x, y) = ζ(x, y) and (ζ̃)∗(y, x) = ζ∗(y, x) (3.iv)

for all x ∈ X, y ∈ Y.

Proof. It is easy to see that ζ̃ and

η : Z //7 X, η(z, x) =

ζ∗(z, x) if z ∈ Y,
⊥ if z < Y

satisfy (3.ii) and (3.iii), and thus ζ̃ ⊣ η, making ζ̃ a Q-map. For the uniqueness of ζ̃, let ζ′ : X //7 Z be another Q-map
satisfying (3.iv). Then for any x ∈ X and z ∈ Z \ Y ,

ζ′(x, z) ⩽ ζ′(x, z) &
(∨

y∈Y

ζ∗(y, x) & ζ(x, y)
)

(Inequality (3.ii))

=
∨
y∈Y

ζ′(x, z) & ζ∗(y, x) & ζ(x, y)

=
∨
y∈Y

ζ′(x, z) & ζ′∗(y, x) & ζ(x, y) (Equations (3.iv))

⩽
∨
y∈Y

idZ(y, z) & ζ(x, y) (Inequality (3.iii))

=
∨
y∈Y

⊥ & ζ(x, y)

= ⊥,

which shows that ζ′ = ζ̃.
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Given (crisp) sets X, Y , we say that a Q-map ζ : X //7 Y is symmetric [10] if ζ∗ = ζop, i.e., if

ζ∗(y, x) = ζ(x, y)

for all x ∈ X, y ∈ Y . In particular, every map f : X // Y between (crisp) sets induces a symmetric Q-map

f◦ : X //7 Y, f◦(x, y) =

k if y = f (x),
⊥ else,

called the graph of f . Thus we have a faithful functor

(−)◦ : Set // Q-Map.

Lemma 3.6. Let ζ : X //7 Y be a Q-map. Then ζ is symmetric if, and only if, the Q-relation

ζs : X //7 Y, ζs(x, y) = ζ(x, y) ∧ ζ∗(y, x)

is a symmetric Q-map.

Proof. If ζ is symmetric, then ζ∗(y, x) = ζop(y, x) = ζ(x, y), and consequently ζs(x, y) = ζ(x, y) for all x ∈ X, y ∈ Y .
Thus ζs = ζ is a symmetric Q-map. Conversely, if ζs is a symmetric Q-map, then

ζ(x, y) ⩽ (ζ ◦ ζ∗s ◦ ζs)(x, y) (ζs ⊣ ζ
∗
s )

=
∨
w∈X

∨
z∈Y

ζ(w, y) & ζs(w, z) & ζs(x, z) (ζs is symmetric)

⩽
∨
w∈X

∨
z∈Y

ζ(w, y) & ζ∗(z,w) & ζs(x, z)

⩽
∨
z∈Y

idY (z, y) & ζs(x, z) (ζ ⊣ ζ∗)

= ζs(x, y)
⩽ ζ(x, y)

for all x ∈ X, y ∈ Y . Thus ζ = ζs is a symmetric Q-map.

The aim of this section is to answer the following questions:

• Is every Q-map symmetric?

• Is every Q-map the graph of a map in Set?

In fact, both the answers are negative, and we will provide necessary and sufficient conditions on Q for them to be
true.

Definition 3.7. Let Q be a non-trivial, commutative and unital quantale. We say that:

(1) Q is lean, if
(p ∨ q = k and p & q = ⊥) =⇒ (p = k or q = k) (3.v)

and
p & q = k ⇐⇒ p = q = k (3.vi)

for all p, q ∈ Q;

(2) Q is weakly lean, if(∨
i∈I

pi & qi = k and pi & q j = ⊥ (i , j)
)
=⇒

(
k ⩽
∨
i∈I

(pi ∧ qi) & (pi ∧ qi)
)

(3.vii)

for all pi, qi ∈ Q (i ∈ I).
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Remark 3.8. (1) Note that (3.vi) is always true when Q is integral. Indeed, p & q = k implies that

k = p & q ⩽ p & k = p ⩽ k,

which forces p = k, and q = k follows from similar calculations. Hence, Definition 3.7(1) generalizes the notion
of lean in [12, Section III.1.2], where the quantale Q is required to be integral, and consequently, only (3.v) is
presented there.

(2) The condition (3.vi) is a modification of the condition given in [10, Proposition 3.5.3(3)]. The difference
between our following Theorem 3.12 and [10, Proposition 3.5.3] is that we deal with the discrete case, i.e.,
Q-maps between (crisp) sets (instead of Q-categories as in [10]).

Lemma 3.9. If Q is lean, then Q is weakly lean.

Proof. Suppose that pi, qi ∈ Q (i ∈ I),
∨
i∈I

pi & qi = k and pi & q j = ⊥ (i , j). Since ⊥ < k, there exists j ∈ I such

that p j & q j > ⊥. Let
u := p j & q j and v :=

∨
i∈I
i, j

p j & q j.

Then
u ∨ v = k and u & v = p j & q j &

(∨
i∈I
i, j

pi & qi

)
=
∨
i∈I
i, j

p j & q j & pi & qi = ⊥. (3.viii)

Note that v , k. Indeed, if v = k, then u & v = u & k = u > ⊥, contradicting to (3.viii). Thus, since Q is lean, we
deduce from (3.viii) that u = p j & q j = k, and consequently p j = q j = k. It follows that∨

i∈I

(pi ∧ qi) & (pi ∧ qi) ⩾ (p j ∧ q j) & (p j ∧ q j) = (k ∧ k) & (k ∧ k) = k,

showing that Q is weakly lean.

Lemma 3.10. If Q is integral, then Q is weakly lean.

Proof. Suppose that pi, qi ∈ Q (i ∈ I),
∨
i∈I

pi & qi = k and pi & q j = ⊥ (i , j). Note that for each i ∈ I,

pi = pi & k

= pi &
(∨

j∈I

p j & q j

)
=
∨
j∈I

pi & p j & q j

= (pi & pi & qi) ∨
(∨

j∈I
j,i

pi & p j & q j

)
= (pi & pi & qi) ∨ ⊥
= pi & pi & qi.

Since Q is integral, we have p & q ⩽ (p & k) ∧ (k & q) = p ∧ q for all p, q ∈ Q, and consequently∨
i∈I

(pi ∧ qi) & (pi ∧ qi) ⩾
∨
i∈I

pi & qi & pi & qi =
∨
i∈I

pi & qi = k,

as desired.
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Example 3.11. For the examples listed in 2.1:

(1) (C3,&, k) is a non-integral lean quantale.

(2) Every frame is divisible, and thus integral. Then it follows from Lemma 3.10 that every frame is weakly lean.
Moreover, F1 = {⊥, p, q,⊤} is not lean while F2 = {⊥, p, q, r,⊤} is lean. Therefore, a weakly lean quantale need
not be lean.

(3) The quantale (M3,&, k) is not lean.

(4) For each continuous t-norm ∗ on [0, 1], the quantale ([0, 1], ∗, 1) is lean.

(5) The quantale ([−∞,∞],+, 0) is not weakly lean, while the Lawvere quantale ([0,∞],+, 0) is lean.

(6) Consider the free quantale (PM,&, {k}) induced by a commutative monoid (M,&, k):

• (PM,&, {k}) is lean if, and only if, k is the only element of M with an inverse; that is, if m ∈ M and m , k,
then there exists no m′ ∈ M with m & m′ = k.

• (PM,&, {k}) is weakly lean if, and only if, there exist no m,m′ ∈ M such that m , m′ and m & m′ = k.

In particular, the free quantale induced by the cyclic group Z2 = Z/2Z = {0, 1} (under the usual addition modulo
2) is non-integral, weakly lean, but not lean.

Theorem 3.12. Let Q be a non-trivial, commutative and unital quantale. Then every Q-map is symmetric if, and only
if, Q is weakly lean.

Proof. For the necessity, suppose that every Q-map is symmetric. Assume that pi, qi ∈ Q (i ∈ I),
∨
i∈I

pi & qi = k and

pi & q j = ⊥ (i , j). Define a Q-relation

ζ : {⋆} //7 I, ζ(⋆, i) = pi,

where {⋆} refers to the singleton set. Note that for each i ∈ I, from pi & qi ⩽ k and qi & p j = ⊥ ( j , i) we have

qi = qi ∧ qi

⩽
(∧

j∈I
j,i

p j → ⊥
)
∧ (pi → k)

=
(∧

j∈I
j,i

ζ(⋆, j)→ ⊥
)
∧ (ζ(⋆, i)→ k)

=
∧
j∈I

ζ(⋆, j)→ idI(i, j)

= (ζ ↘ idI)(i, ⋆)

=
(∨

j∈I

p j & q j

)
&
(∧

l∈I

ζ(⋆, l)→ idI(i, l)
)

=
[∨

j∈I
j,i

p j & q j &
(∧

l∈I

pl → idI(i, l)
)]
∨
[
pi & qi &

(∧
l∈I

pl → idI(i, l)
)]

⩽
[∨

j∈I
j,i

p j & q j & (p j → ⊥)
]
∨
[
pi & qi & (pi → k)

]
⩽ ⊥ ∨ (qi & k)
= qi.
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Thus qi = (ζ ↘ idI)(i, ⋆) = ζ∗(i, ⋆). It follows that

(ζ∗ ◦ ζ)(⋆,⋆) =
∨
i∈I

ζ∗(i, ⋆) & ζ(⋆, i) =
∨
i∈I

qi & pi = k = id{⋆}(⋆,⋆),

which in conjunction with Lemma 2.3 shows that ζ is a Q-map. Since every Q-map is symmetric, in particular we
have

qi = ζ
∗(i, ⋆) = ζop(i, ⋆) = ζ(⋆, i) = pi

for all i ∈ I, and consequently∨
i∈I

(pi ∧ qi) & (pi ∧ qi) =
∨
i∈I

(pi ∧ pi) & (qi ∧ qi) =
∨
i∈I

pi & qi = k.

Hence Q is weakly lean.
Conversely, for the sufficiency, suppose that Q is weakly lean. In order to show that every Q-map ζ : X //7 Y is

symmetric, by Lemma 3.6 it suffices to show that ζs is always a symmetric Q-map. To this end, let x ∈ X. First,

k = idX(x, x) ⩽ (ζ∗ ◦ ζ)(x, x) =
∨
y∈Y

ζ∗(y, x) & ζ(x, y) ⩽
∨
y∈Y

idY (y, y) = k,

Second, for any y, z ∈ Y with y , z,

ζ(x, z) & ζ∗(y, x) ⩽ (ζ ◦ ζ∗)(y, z) ⩽ idY (y, z) = ⊥.

Thus ∨
y∈Y

ζ∗(y, x) & ζ(x, y) = k and ζ(x, z) & ζ∗(y, x) = ⊥ (y , z) (3.ix)

Since Q is weakly lean, (3.ix) forces

ζ
op
s ◦ ζs(x, x) =

∨
y∈Y

ζ
op
s (y, x) & ζs(x, y) =

∨
y∈Y

(ζ(x, y) ∧ ζ∗(y, x)) & (ζ(x, y) ∧ ζ∗(y, x)) ⩾ k = idX(x, x).

Moreover,
ζs ◦ ζ

op
s (y, z) =

∨
x∈X

ζs(x, z) & ζ
op
s (y, x) ⩽

∨
x∈X

ζ(x, z) & ζ∗(y, x) ⩽ idY (y, z)

for all y, z ∈ Y . Thus ζs ⊣ ζ
op
s ; that is, ζs is a symmetric Q-map.

Corollary 3.13. If Q is weakly lean, then for any Q-maps ζ, η : X //7 Y, ζ = η whenever ζ ⩽ η.

Proof. First, ζ ⩽ η implies that η∗ ⩽ ζ∗. Second, since Q is weakly lean, Theorem 3.12 indicates that ηop = η∗ ⩽
ζ∗ = ζop. Thus η ⩽ ζ, as desired.

Remark 3.14. Following the terminology of [11, Definition 3.1(2)], Corollary 3.13 actually says that Q-Map is
map-discrete when Q is weakly lean.

We would also like to point out that every Q-map is symmetric if Q is modular (cf. [10, Definition 2.5.1])
and localic (cf. [10, Definition 2.1.1]), which is an immediate consequence of [10, Propositions 2.5.3(4) and 2.5.9].
However, this is only a sufficient condition, since a weakly lean quantale need not be localic; for example, the quantale
M3 given in Example 2.1(3) is lean but not localic.

Theorem 3.15. Let Q be a non-trivial, commutative and unital quantale. Then every Q-map is the graph of a map in
Set if, and only if, Q is lean. In this case, Set and Q-Map are isomorphic categories.
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Proof. For the necessity, suppose that every Q-map is the graph of a map in Set.
First, let p, q ∈ Q with p ∨ q = k and p & q = ⊥. Then both p and q are idempotent, since

p = p & k = p & (p ∨ q) = (p & p) ∨ (p & q) = (p & p) ∨ ⊥ = p & p and
q = k & q = (p ∨ q) & q = (p & q) ∨ (q & q) = ⊥ ∨ (q & q) = q & q.

It follows that
p ⩽ p→ k, q ⩽ q→ k, p ⩽ q→ ⊥ and q ⩽ p→ ⊥. (3.x)

Define a Q-relation
ζ : {⋆} //7 {p, q}, ζ(⋆, p) = p, ζ(⋆, q) = q.

Then, from (3.x) we deduce that

ζ∗(p, ⋆) = (ζ ↘ idY )(p, ⋆) = (ζ(⋆, p)→ idY (p, p)) ∧ (ζ(⋆, q)→ idY (p, q)) = (p→ k) ∧ (q→ ⊥) ⩾ p ∧ p = p,

and similarly ζ∗(q, ⋆) ⩾ q. Thus

(ζ∗ ◦ ζ)(⋆,⋆) = (ζ∗(p, ⋆) & ζ(⋆, p)) ∨ (ζ∗(q, ⋆) & ζ(⋆, q)) ⩾ (p & p) ∨ (q & q) = p ∨ q = k.

By Lemma 2.3, ζ is a Q-map, and hence the graph of a map f : {⋆} // {p, q} in Set, which forces p = k or q = k.
Second, let p, q ∈ Q with p & q = k. Define a Q-relation

η : {⋆} //7 {⋆}, η(⋆,⋆) = p.

Since
(η∗ ◦ η)(⋆,⋆) = (η(⋆,⋆)→ id{⋆}(⋆,⋆)) & η(⋆,⋆) = (p→ k) & p ⩾ q & p = k,

η is a Q-map by Lemma 2.3. Thus η is a graph of the unique (identity) map g : {⋆} // {⋆}, which forces p = k, and
consequently q = q & k = q & p = k.

Conversely, for the sufficiency, suppose that Q is lean. Let ζ : X //7 Y be a Q-map. For each x ∈ X, since

k = idX(x, x) ⩽ (ζ∗ ◦ ζ)(x, x) =
∨
y∈Y

ζ∗(y, x) & ζ(x, y) ⩽
∨
y∈Y

(ζ ◦ ζ∗)(y, y) ⩽
∨
y∈Y

idY (y, y) = k, (3.xi)

we have ∨
y∈Y

ζ∗(y, x) & ζ(x, y) = k.

Since k > ⊥, there exists f (x) ∈ Y with p := ζ∗( f (x), x) & ζ(x, f (x)) > ⊥. Let

q :=
∨
y∈Y

y, f (x)

ζ∗(y, x) & ζ(x, y).

Then p ∨ q = k, and

p & q = ζ∗( f (x), x) & ζ(x, f (x)) &
( ∨

y∈Y
y, f (x)

ζ∗(y, x) & ζ(x, y)
)

=
∨
y∈Y

y, f (x)

ζ∗( f (x), x) & ζ(x, f (x)) & ζ∗(y, x) & ζ(x, y)

=
∨
y∈Y

y, f (x)

ζ(x, f (x)) & ⊥ & ζ∗( f (x), x))

= ⊥,
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where the third equality follows from

ζ(x, z) & ζ∗(y, x) ⩽ (ζ ◦ ζ∗)(y, z) ⩽ idY (y, z) = ⊥

for all y, z ∈ Y with y , z.
Note that q , k, because q = k would lead to p & q = p & k = p > ⊥, contradicting to p & q = ⊥. Therefore,

given that Q is lean, we conclude that p = ζ∗( f (x), x) & ζ(x, f (x)) = k, and consequently

ζ∗( f (x), x) = ζ(x, f (x)) = k.

We claim that ζ is the graph of the map f : X //Y . Indeed, it is obvious that f◦ ⩽ ζ, and hence the conclusion follows
immediately from Lemma 3.9 and Corollary 3.13.

As mentioned in Remark 3.8(1), Theorem 3.15 reduces to [12, Proposition III.1.2.1] when Q is integral:

Corollary 3.16. (See [12].) Let Q be a non-trivial, commutative and integral quantale. Then every Q-map is the
graph of a map in Set if, and only if,

(p ∨ q = ⊤ and p & q = ⊥) =⇒ (p = ⊤ or q = ⊤)

for p, q ∈ Q.

4. Quantale-valued partial maps

Note that coproducts in the category Q-Map are given by disjoint unions of sets as in Set:

Lemma 4.1. Q-Map has all coproducts.

Proof. Let X =
∐
i∈I

Xi be the disjoint union of a family of sets {Xi}i∈I , and let ιi : Xi
//7 X (i ∈ I) be the graphs of the

inclusion maps. For any family of Q-maps {ζi : Xi
//7 Y}i∈I , define a Q-relation

ζ : X //7 Y, ζ(x, y) = ζi(x, y) if x ∈ Xi, y ∈ Y.

Then ζ is clearly a Q-map, and ζ ◦ ιi = ζi (i ∈ I) since

(ζ ◦ ιi)(x, y) =
∨
w∈X

ζ(w, y) & ιi(x,w)

=
( ∨

w∈X\Xi

ζ(w, y) & ⊥
)
∨
( ∨

w∈Xi

ζ(w, y) & idXi (x,w)
)

=
∨
w∈Xi

ζi(w, y) & idXi (x,w)

= ζi(x, y)

for all x ∈ Xi, y ∈ Y . Finally, for the uniqueness of ζ, let η : X //7 Z be a Q-map satisfying η ◦ ιi = ζi for all i ∈ I.
Then

ζi(x, y) = η ◦ ιi(x, y) =
∨
w∈X

η(w, y) & idX(x,w) = η(x, y)

for all x ∈ Xi, y ∈ Y , which completes the proof.

Lemma 4.2. If ζ : X //7 Y, η : X′ //7 Y ′ are Q-maps, then

ζ ⨿ η : X ⨿ X′ //7 Y ⨿ Y ′

is a Q-map.
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Proof. It is straightforward to check that ζ∗ ⨿ η∗ : Y ⨿ Y ′ //7 X ⨿ X′ is the right adjoint of ζ ⨿ η in Q-Rel.

Let
X+ := X ⨿ {⋆}

denote the disjoint union of every (crisp) set X and the singleton set {⋆}.

Definition 4.3. Let X, Y be (crisp) sets. A partial Q-map ζ from X to Y is a Q-map ζ : X //7 Y+.

Remark 4.4. The singleton set {⋆} may not be a terminal object of Q-Map. For example, if Q = M3 (see Example
2.1(3)), then there are two different Q-maps from {⋆} to {⋆}:

• the graph of the identity map on {⋆};

• the Q-map
ζ : {⋆} //7 {⋆}, ζ(⋆,⋆) = a,

whose right adjoint is given by
η : {⋆} //7 {⋆}, η(⋆,⋆) = b.

Remark 4.5. When Q is an integral quantale, every partial Q-map is a fuzzy partial function defined in [4, 5], but not
vice versa.

In order to construct the category of sets and partial Q-maps, note that by setting

C = Q-Map and A = {⋆}

in (1.i) and (1.ii) we obtain a pair of adjoint functors

Q-Map {⋆}/Q-Map
F //

{⋆}/Q-MapQ-Map
U

oo
⊥ (4.i)

given by the following data:

• U is the forgetful functor;

• the functor F sends each set X to the graph of the inclusion map {⋆} �
�
//X+, and sends each Q-map ζ : X //7 Y

to the Q-map
ζ+ := ζ ⨿ id{⋆} : X+ //7 Y+;

• for each set X, the component of the unit ιX : X //7 X+ is the graph of the inclusion map X �
�
// X+;

• for each object µ : {⋆} //7 X in {⋆}/Q-Map, the component of the counit εµ : FX //7 µ is given by

εµ(x, y) =

idX(x, y) if x, y ∈ X,
µ(⋆, y) if x = ⋆ and y ∈ X.

The adjunction F ⊣ U induces the maybe monad (T,m, ι) on Q-Map, whose endofunctor T = UF carries each set X to
X+, and whose multiplication is given by

mX : (X+)+ //7 X+, mX(x, y) =


idX(x, y) if x, y ∈ X,
k if x = y = ⋆,
⊥ if x = ⋆, y ∈ X or x ∈ X, y = ⋆.

(4.ii)

The isomorphism between {⋆}/Q-Map and the Eilenberg-Moore category Q-MapT is not difficult to be observed.
Indeed, a T-algebra (X, µ) consists of a set X and a Q-map µ : X+ //7 X such that

µ ◦ ιX = idX ,
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which is clearly uniquely determined by an object in {⋆}/Q-Map. Moreover, it is easy to see that a morphism
ζ : (X, µ) //7 (Y, λ) of T-algebras is a Q-map ζ : X //7 Y such that

(ζ ◦ µ)(⋆, y) = λ(⋆, y)

for all y ∈ Y , which is simply a morphism in {⋆}/Q-Map. Therefore, in what follows we identify Q-MapT with
{⋆}/Q-Map.

Furthermore, objects in the Kleisli category Q-MapT are sets, and a morphism from X to Y in Q-MapT is exactly
a Q-map X //7 Y+; that is, a partial Q-map from X to Y . Thus, we denote by

Q-Map∂ := Q-MapT

the category of sets and partial Q-maps. By Lemma 3.5, Q-Map is embedded in Q-Map∂ as a full subcategory.

Lemma 4.6. The composite of partial Q-maps ζ : X //7 Y+ and η : Y //7 Z+ is given by

(η ⋄ ζ)(x, z) =


∨
y∈Y

η(y, z) & ζ(x, y) if x ∈ X and z ∈ Z,(∨
y∈Y

η(y, ⋆) & ζ(x, y)
)
∨ ζ(x, ⋆) if x ∈ X and z = ⋆.

(4.iii)

Proof. (4.iii) follows from η ⋄ ζ = mZ ◦ (Tη) ◦ ζ and

(mZ ◦ (Tη) ◦ ζ)(x, z) =
∨

w∈(Z+)+

∨
y∈Y+

mZ(w, z) & (Tη)(y,w) & ζ(x, y) =
∨
y∈Y

η(y, z) & ζ(x, y),

(mZ ◦ (Tη) ◦ ζ)(x, ⋆) =
∨

z′∈(Z+)+

∨
y∈Y+

mZ(z′, ⋆) & (Tη)(y, z′) & ζ(x, y) =
(∨

y∈Y

η(y, ⋆) & ζ(x, y) & k
)
∨ (ζ(x, ⋆) & k)

for all x ∈ X, z ∈ Z.

Remark 4.7. Let ζ : X // Y+ be a partial Q-map from X to Y . The value

ζ(x, ⋆)

is interpreted as the degree that x has no image under the map ζ, and so is the value

ζ∗(⋆, x) =
∧
z∈Y+

ζ(x, z)→ idY+ (⋆, z),

because the above expression means that

• For each z ∈ Y+, if z is the image of x under ζ, then z is equal to ⋆; in other words, x has no image under ζ
within Y .

The adjunction ζ ⊣ ζ∗ can be translated as follows:

• For every x ∈ X, there may not be y ∈ Y such that y is the image of x under ζ; because idX ⩽ ζ∗ ◦ ζ means that

k ⩽
∨
y∈Y+

ζ∗(y, x) & ζ(x, y) = (ζ∗(⋆, x) & ζ(x, ⋆)) ∨
(∨

y∈Y

ζ∗(y, x) & ζ(x, y)
)

for all x ∈ X.

• If y, z ∈ Y are both the images of x under ζ, then y is equal to z; because ζ ◦ ζ∗ ⩽ idY+ means that∨
x∈X

ζ(x, z) & ζ∗(y, x) ⩽ idY+ (y, z) = idY (y, z)

for all y, z ∈ Y . Moreover, setting y ∈ Y and z = ⋆ in the above inequality we obtain that

ζ(x, ⋆) & ζ∗(y, x) = idY+ (y, ⋆) = ⊥

for all x ∈ X; that is, “x has no image under ζ” and “y is the image of x under ζ” cannot happen simultaneously.
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Given another partial Q-map η : Y //7 Z+ from Y to Z, the formula (4.iii) given in Lemma 4.6 is understood as
follows:

• z ∈ Z is the image of x under η ⋄ ζ if, and only if, there exists y ∈ Y such that y is the image of x under ζ, and z
is the image of y under η.

• x has no image under η ⋄ ζ if, and only if, either of the following cases holds:

– x has no image under ζ;

– x has an image y under ζ, but y has no image under η.

Theorem 4.8. Let Q be a non-trivial, commutative and unital quantale. Then every partial Q-map is the graph of a
partial map in Set if, and only if, Q is lean. In this case, Set∂ and Q-Map∂ are isomorphic categories.

Proof. Since Q-Map is embedded in Q-Map∂ as a full subcategory, the necessity is an immediate consequence of
Theorem 3.15. For the sufficiency, suppose that Q is lean. Since every partial Q-map is a Q-map ζ : X //7 Y+, there
is a map f : X // Y+ in Set such that ζ = f♮, which is exactly a partial map in Set.

Let (X+, τX) ∈ {⋆}/Q-Map denote the free T-algebra on a set X. Then

τX : {⋆} //7 X+, τX(⋆, x) =

k if x = ⋆,
⊥ if x ∈ X

(4.iv)

is the restriction of mX : (X+)+ //7 X+ (see (4.ii)), which is exactly the graph of the inclusion map {⋆} �
�
// X+. It is

well known that the canonincal functor

K : Q-Map∂(= Q-MapT) // {⋆}/Q-Map(� Q-MapT)

that sends each Q-map ζ : X //7 Y+ (i.e., partial Q-map from X to Y) to

Kζ : (X+, τX) //7 (Y+, τY ), (Kζ)(x, y) =


ζ(x, y) if x ∈ X, y ∈ Y,
k if x = ⋆ = y,
⊥ else

is fully faithful (see, e.g., [21, Lemma 5.2.13]).

Lemma 4.9. Assuming the axiom of choice, every object of {⋆}/Q-Map is isomorphic to a free T-algebra, hence the
functor K is essentially surjective.

Proof. Let (X, µ) ∈ {⋆}/Q-Map. Since X is the codomain of the Q-map µ : {⋆} //7 X, it is clear that X , ∅. By the
axiom of choice and [9], there exists a binary operation · on X such that (X, ·) is a group, with e ∈ X being its unit.
Then

(G1) x · z , y · z and z · x , z · y for all x, y, z ∈ X with x , y, and

(G2) x · y , x for all x, y ∈ X with y , e.

Our strategy is to show that (X, µ) is isomorphic to

K(X \ {e}) = ((X \ {e})+, τX\{e}).

Explicitly, we define Q-relations

ζ : X //7 (X \ {e})+, ζ(x, a) =

µ∗(x, ⋆) if x ∈ X, a = ⋆
µ∗(x · a, ⋆) if x, a ∈ X
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and

η : (X \ {e})+ //7 X, η(a, x) =

µ(⋆, x) if a = ⋆, x ∈ X
µ(⋆, x · a) if a, x ∈ X,

and we show that ζ and η establish an isomorphism between (X, µ) and ((X \ {e})+, τX\{e}) in {⋆}/Q-Map.
First, η◦ ζ = idX and ζ ◦η = id(X\{e})+ , so that ζ and η are both Q-maps, and they are inverses of each other. Indeed,

it follows from (G1) and Lemma 3.4 that

(η ◦ ζ)(x, y) =
∨

a∈(X\{e})+

η(a, y) & ζ(x, a) = (µ(⋆, y) & µ∗(x, ⋆)) ∨
( ∨

a∈X\{e}

µ(⋆, y · a) & µ∗(x · a, ⋆)
)
= ⊥

for all x, y ∈ X with x , y, and

(η ◦ ζ)(x, x) = (µ(⋆, x) & µ∗(x, ⋆)) ∨
( ∨

a∈X\{e}

µ(⋆, x · a) & µ∗(x · a, ⋆)
)

⩽ idX(x, x) ∨
( ∨

a∈X\{e}

idX(x · a, x · a)
)

(µ ⊣ µ∗)

= k

= (µ∗ ◦ µ)(⋆,⋆) (Lemma 3.4)

= (µ(⋆, x) & µ∗(x, ⋆)) ∨
(∨

y∈X
y,x

µ(⋆, y) & µ∗(y, ⋆)
)

= (µ(⋆, x) & µ∗(x, ⋆)) ∨
(∨

y∈X
y,x

µ(⋆, x · x−1 · y) & µ∗(x · x−1 · y, ⋆)
)

⩽ (µ(⋆, x) & µ∗(x, ⋆)) ∨
( ∨

a∈X\{e}

µ(⋆, x · a) & µ∗(x · a, ⋆)
)

(x , y =⇒ x−1 · y , e)

= (η ◦ ζ)(x, x)

for all x ∈ X. Thus η ◦ ζ = idX . In order to show that ζ ◦ η = id(X\{e})+ , from (G1), (G2) and Lemma 3.4 we deduce that

(ζ ◦ η)(a, b) =
∨
x∈X

ζ(x, b) & η(a, x) =
∨
x∈X

µ∗(x · b, ⋆) & µ(⋆, x · a) = ⊥,

(ζ ◦ η)(a, ⋆) =
∨
x∈X

ζ(x, ⋆) & η(a, x) =
∨
x∈X

µ∗(x, ⋆) & µ(⋆, x · a) = ⊥,

(ζ ◦ η)(⋆, b) =
∨
x∈X

ζ(x, b) & η(⋆, x) =
∨
x∈X

µ∗(x · b, ⋆) & µ(⋆, x) = ⊥

for all a, b ∈ X \ {e} with a , b. Moreover, it follows from Lemma 3.4 that

(ζ ◦ η)(⋆,⋆) =
∨
x∈X

ζ(x, ⋆) & η(⋆, x) =
∨
x∈X

µ∗(x, ⋆) & µ(⋆, x) = (µ∗ ◦ µ)(⋆,⋆) = k,

and

(ζ ◦ η)(a, a) =
∨
x∈X

µ(⋆, x · a) & µ∗(x · a, ⋆)

⩽
∨
x∈X

idX(x · a, x · a) (µ ⊣ µ∗)

= k

= (µ∗ ◦ µ)(⋆,⋆) (Lemma 3.4)

=
∨
x∈X

µ∗(x, ⋆) & µ(⋆, x)
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=
∨
x∈X

µ∗(x · a−1 · a, ⋆) & µ(⋆, x · a−1 · a)

⩽
∨
y∈X

µ∗(y · a, ⋆) & µ(⋆, y · a)

= (ζ ◦ η)(a, a)

for all a ∈ X \ {e}, as desired.
Second, ζ ◦ µ = τX\{e} and η ◦ τX\{e} = µ, so that ζ : (X, µ) // ((X \ {e})+, τX\{e}) and η : ((X \ {e})+, τX\{e}) // (X, µ)

are isomorphisms in {⋆}/Q-Map. Indeed, ζ ◦ µ = τX\{e} because

(ζ ◦ µ)(⋆,⋆) =
∨
x∈X

ζ(x, ⋆) & µ(⋆, x)

=
∨
x∈X

µ∗(x, ⋆) & µ(⋆, x)

= (µ∗ ◦ µ)(⋆,⋆)
= k (Lemma 3.4)
= τX\{e}(⋆,⋆)

and

(ζ ◦ µ)(⋆, a) =
∨
x∈X

ζ(x, a) & µ(⋆, x)

=
∨
x∈X

µ(⋆, x) & µ∗(x · a, ⋆)

= ⊥ ((G2) and Lemma 3.4)
= τX\{e}(⋆, a)

for all a ∈ X \ {e}. Meanwhile, η ◦ τX\{e} = µ because

(η ◦ τX\{e})(⋆, x) =
∨

a∈(X\{e})+

η(a, x) & τX\{e}(⋆, a) = η(⋆, x) & k = η(⋆, x) = µ(⋆, x)

for all x ∈ X, where the second equality follows from (4.iv).

Lemma 4.9 guarantees that K : Q-Map∂ // {⋆}/Q-Map is an equivalence of categories:

Theorem 4.10. Assuming the axiom of choice, Q-Map∂ is equivalent to {⋆}/Q-Map and, therefore, is monadic over
Q-Map.
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