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Abstract

It is shown that the isomorphism relation between continuous t-norms is Borel bireducible with the relation of order
isomorphism between linear orders on the set of natural numbers, and therefore, it is Borel bireducible with every
Borel complete equivalence relation.
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1. Introduction

Triangular norms, usually referred to as t-norms [14, 2], have their origins in the study of probabilistic metric
spaces [16, 20], where they are used to generalize the triangle inequality of classical metric spaces. Later, t-norms
received wide attention in the field of fuzzy logic (see, e.g., [11, 17, 4, 6]), where they provide a mathematical
framework for extending the concept of conjunction to fuzzy logic. The most important fuzzy logics are the Gödel,
the product, and the Łukasiewicz logics, whose cornerstones are the three basic continuous t-norms, namely the
minimum, the product and the Łukasiewicz t-norms. In fact, it is well known that every continuous t-norm is an
ordinal sum of these three basic t-norms [7, 18, 14, 15, 2]; we record an equivalent form of this result as Lemma 2.4.

Classifying a class of mathematical objects up to isomorphism is a fundamental problem in various areas of
mathematics. For example, finite-dimensional vector spaces over a given field are classified up to isomorphism by
their dimension, and finite fields are classified up to isomorphism by their order. As the structure of a continuous
t-norm is clear by decomposing it into an ordinal sum of the three basic t-norms, it is natural to ask whether it is
possible to classify continuous t-norms up to isomorphism. A little surprisingly, as revealed in Theorem 2.5, as well
as in Examples 2.6 and 2.7, the isomorphism between continuous t-norms can be rather tricky. Hence, we settle
for investigating the complexity of classifying continuous t-norms up to isomorphism through descriptive set theory
[13, 9].

Explicitly, the set T of continuous t-norms becomes a Polish space by taking the sup metric (Proposition 3.2). We
prove the following results:

• The isomorphism relation �t on T is Borel reducible to the isomorphism relation on Mod(L1), where L1 is a
finite relational language consisting of a binary relation symbol and three unary relation symbols (Proposition
4.2).

• The equivalence relation �L0 of order isomorphism on the set LO of linear orders on the set of natural numbers
is continuously reducible to the isomorphism relation �t on T (Proposition 4.5).

Our main result, Theorem 4.6, then arises from the combination the these two propositions:

• The isomorphism relation �t on T is Borel bireducible with the equivalence relation �L0 on LO.
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As immediate consequences, we deduce that the isomorphism relation �t is a complete analytic subset of T × T
(Corollary 4.7), and thus it is not smooth (Corollary 4.8). Moreover, it is Borel bireducible with every Borel complete
equivalence relation (Example 4.9).

2. Isomorphisms of continuous t-norms

Given an interval [a, b] ⊆ R, a continuous function ∗ : [a, b] × [a, b] → [a, b] is called a continuous t-norm on
[a, b] [14, 15, 2] if

• ([a, b], ∗, b) is a commutative monoid, and

• p ∗ q ⩽ p′ ∗ q′ if p ⩽ p′ and q ⩽ q′ in [a, b].

For each continuous t-norm ([a, b], ∗) and q ∈ [a, b], we say that

• q is idempotent, if q ∗ q = q;

• q is nilpotent, if q(n)
∗ := q ∗ q ∗ · · · ∗ q︸          ︷︷          ︸

n times

= a for some n ∈ ω \ {0}, where ω = {0, 1, 2, . . . } refers to the set of

natural numbers.

Lemma 2.1. (See [14, Proposition 2.3].) Let ([a, b], ∗) be a continuous t-norm. If q ∈ [a, b] is idempotent, then
p ∗ q = min{p, q} for all p ∈ (a, b).

Example 2.2. The following continuous t-norms on the unit interval [0, 1] are the most prominent ones:

• The minimum t-norm ([0, 1], ∗M) with p ∗M q = min{p, q} for all p, q ∈ [0, 1], in which every q ∈ (0, 1) is
idempotent and non-nilpotent.

• The product t-norm ([0, 1], ∗P) with p∗P q = pq being the usual product of p, q ∈ [0, 1], in which every q ∈ (0, 1)
is non-idempotent and non-nilpotent.

• The Łukasiewicz t-norm ([0, 1], ∗Ł) with p ∗Ł q = max{0, p+ q− 1} for all p, q ∈ [0, 1], in which every q ∈ (0, 1)
is non-idempotent and nilpotent.

We say that continuous t-norms ([a1, b1], ∗1) and ([a2, b2], ∗2) are isomorphic, denoted by

([a1, b1], ∗1) �t ([a2, b2], ∗2),

if there exists an order isomorphism
φ : [a1, b1]→ [a2, b2]

such that
φ : ([a1, b1], ∗1, b1)→ ([a2, b2], ∗2, b2)

is an isomorphism of monoids. It is straightforward to verify the following lemma:

Lemma 2.3. Let ([a, b], ∗) be a continuous t-norm.

(1) (See [15, Theorem 2.6].) ([a, b], ∗) is isomorphic to the Łukasiewicz t-norm ([0, 1], ∗Ł) if, and only if, every
q ∈ (a, b) is nilpotent.

(2) If ([a, b], ∗) is isomorphic to the product t-norm ([0, 1], ∗P) or the Łukasiewicz t-norm ([0, 1], ∗Ł), then p ∗ q <
min{p, q} for all p, q ∈ (a, b).

It is well known [7, 18, 14, 15, 2] that every continuous t-norm ∗ on the unit interval [0, 1] can be written as an
ordinal sum of the minimum, the product, and the Łukasiewicz t-norm. Explicitly:
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Lemma 2.4. [14, 15, 2] For each continuous t-norm ([0, 1], ∗), the set of non-idempotent elements of ∗ in [0, 1] is a
union of countably many pairwise disjoint open intervals

{(aα, bα) | 0 < aα < bα < 1, α ∈ A, A is countable},

and for each α ∈ A, the continuous t-norm ([aα, bα], ∗) obtained by restricting ∗ to [aα, bα] is either isomorphic to the
product t-norm ([0, 1], ∗P) or isomorphic to the Łukasiewicz t-norm ([0, 1], ∗Ł). Moreover,

p ∗ q = min{p, q} = p and q ∗ r = min{q, r} = q

whenever 0 ⩽ p ⩽ aα ⩽ q ⩽ bα ⩽ r ⩽ 1 for some α ∈ A.

Therefore, it makes sense to denote a continuous t-norm ([0, 1], ∗) by

([aα, bα], ∗)α∈A, (2.i)

where the intervals [aα, bα] (α ∈ A) are obtained by Lemma 2.4, and we define:

• I∗P = {(aα, bα) | α ∈ A and ([aα, bα], ∗) �t ([0, 1], ∗P)}.

• I∗Ł = {(aα, bα) | α ∈ A and ([aα, bα], ∗) �t ([0, 1], ∗Ł)}.

• I∗M = {(a, b) | (a, b) is a maximal nonempty open interval of idempotent elements of ([0, 1], ∗)}; in other words,
(a, b) ∈ IM if

– every q ∈ (a, b) is an idempotent element of ∗, and

– for each ϵ > 0, there exist non-idempotent elements of ∗ in (a − ϵ, a) and (b, b + ϵ).

Let S denote the set of all collections of non-empty, pairwise disjoint open subintervals of [0, 1] whose union is
dense in [0, 1]. In other words, S ∈ S if S is a collection of non-empty, pairwise disjoint open subintervals of [0, 1]
and ⋃

S = [0, 1].

Then:

• each S ∈ S is equipped with a (strict) linear order ≺ given by

(a, b) ≺ (c, d) ⇐⇒ b ⩽ c (2.ii)

for all (a, b), (c, d) ∈ S;

• there is a map Υ from the set T of continuous t-norms on [0, 1] to S given by

Υ : T → S, ([aα, bα], ∗)α∈A 7→ I∗P ∪ I∗Ł ∪ I∗M . (2.iii)

Theorem 2.5. Let ([0, 1], ∗) = ([aα, bα], ∗)α∈A and ([0, 1], •) = ([cβ, dβ], •)β∈B be continuous t-norms. Then the
following statements are equivalent:

(1) ([0, 1], ∗) �t ([0, 1], •).

(2) There is an order isomorphism
Φ : Υ([0, 1], ∗)→ Υ([0, 1], •) (2.iv)

such that
(a, b) ∈ I∗i ⇐⇒ Φ(a, b) ∈ I•i (i ∈ {P,Ł,M}). (2.v)
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Proof. (1) =⇒ (2): Let φ : ([0, 1], ∗)→ ([0, 1], •) be an isomorphism of continuous t-norms. Define

Φ : Υ([0, 1], ∗)→ Υ([0, 1], •), (a, b) 7→ (φ(a), φ(b)).

Then Φ is clearly an order isomorphism because so is φ. Moreover, (2.v) follows from the fact that for each (a, b) ∈
Υ([0, 1], ∗), the restriction φ|[a, b] : [a, b]→ [φ(a), φ(b)] is also an isomorphism of continuous t-norms.

(2) =⇒ (1): For each (a, b) ∈ Υ([0, 1], ∗), by (2.v) we find an isomorphism of continuous t-norms

φab : ([a, b], ∗)→ ([aΦ, bΦ], •),

where (aΦ, bΦ) := Φ(a, b). Let ψab = φa,b|(a, b), i.e., the restriction of φab on (a, b). Then

ψ =
⋃

(a,b)∈Υ([0,1],∗)

ψab :
⋃

Υ([0, 1], ∗)→
⋃

Υ([0, 1], •)

is a well-defined and strictly increasing bijection, and it follows from Lemma 2.4 that

ψ(x ∗ y) = ψ(x) • ψ(y)

for all x, y ∈
⋃
Υ([0, 1], ∗). Since

⋃
Υ([0, 1], ∗) and

⋃
Υ([0, 1], •) are both open dense subsets of [0, 1], the map

φ : [0, 1]→ [0, 1], φ(x) = sup
y∈[0,x]∩(

⋃
Υ([0,1],∗))

ψ(y)

is clearly an order isomorphism on [0, 1] that extends ψ, and it is also an isomorphism of monoids

φ : ([0, 1], ∗, 1)→ ([0, 1], •, 1)

by the continuity of φ, ∗ and •. Hence ([0, 1], ∗) �t ([0, 1], •).

Example 2.6. The continuous t-norms([
1 −

1
n + 1

, 1 −
1

n + 2

]
, ∗
)

n∈ω
and

([ 1
n + 2

,
1

n + 1

]
, •
)

n∈ω
(2.vi)

are not isomorphic, even if
([

1−
1

n + 1
, 1−

1
n + 2

]
, ∗
)

and
([ 1

n + 2
,

1
n + 1

]
, •
)

are both isomorphic to ([0, 1], ∗P) for all
n ∈ ω. Indeed, we have

I∗P =
{(

1 −
1

n + 1
, 1 −

1
n + 2

) ∣∣∣∣ n ∈ ω}, I•P =
{( 1

n + 2
,

1
n + 1

) ∣∣∣∣ n ∈ ω} and I∗Ł = I∗M = I•Ł = I•M = ∅.

Thus, Υ([0, 1], ∗) = I∗P has a ≺-minimum element, i.e.,
(
0,

1
2

)
, while Υ([0, 1], •) = I•P does not. Therefore, there is

no order isomorphism from Υ([0, 1], ∗) to Υ([0, 1], •); by Theorem 2.5, this means that the continuous t-norms (2.vi)
cannot be isomorphic.

Example 2.7. Let 2 = {0, 1}. Write 2<ω for the binary tree, i.e., the set of finite strings made up of 0 and 1. Recall
that a family J = {Ju}u∈2<ω of sets is called a Cantor System (see, e.g., [5, Definition 899]) if for each u ∈ 2<ω:

• Ju = [a, b] for some a < b in R;

• Ju⌢0, Ju⌢1 ⊆ Ju, where u⌢0 and u⌢1 refer to the extensions of the finite string u obtained by adding 0 and 1 at
the end of u, respectively;

• Ju⌢0 ∩ Ju⌢1 = ∅;

• lim
n→∞
|Jb0b1...bn | = 0, where b = b0b1 . . . bn · · · ∈ 2ω is an arbitrary infinite binary sequence, and |Jb0b1...bn | refers to

the length of the interval Jb0b1...bn .
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A set A ⊆ R is called a generalized Cantor set if it is generated by some Cantor system J = {Ju}u∈2<ω ; explicitly,

x ∈ A ⇐⇒ ∃b = b0b1 . . . bn · · · ∈ 2ω : x ∈
⋂
n∈ω

Jb0b1...bn .

For example, the (classical) Cantor set and the ε-Cantor set (also Smith–Volterra–Cantor set, see, e.g., [1, Section
18] and [21, Exercise 3.24]) are both generalized Cantor sets.

For each generalized Cantor set A generated by a Cantor system J = {Ju}u∈2<ω with J∅ = [0, 1], we denote by

KA = {(an, bn)}n∈ω

the collection of the open intervals removed from [0, 1] during the construction of A. Note that the open intervals in
KA are nonempty and pairwise disjoint. Define a continuous t-norm

([0, 1], ∗A) := ([an, bn], ∗A)n∈ω (2.vii)

with each ([an, bn], ∗A) being isomorphic to ([0, 1], ∗P) (n ∈ ω). From the construction of (2.vii) it is easy to see that

I∗A
P = KA, I∗A

Ł = ∅ and
⋃

I∗A
M ⊆ A. (2.viii)

If A is the Cantor set or the ε-Cantor set, it is obvious that the associated Cantor system J = {Ju}u∈2<ω has the
following property:

(E) For each u ∈ 2<ω, Ju and Ju⌢0 have the same left endpoint, while Ju and Ju⌢1 have the same right endpoint.

Intuitively, the property (E) means that during the construction of A, the open interval removed at each step is always
located in the middle of the original closed interval (i.e., the left and right endpoints of the removed interval and the
original interval are always different). Therefore, in this case, the order ≺ on KA (defined in the same way as in (2.ii))
has no endpoints; that is, (KA,≺) has no minimum or maximum elements.

Fact 1. Let A and B be generalized Cantor Sets generated by the Cantor systems J = {Ju}u∈2<ω and L = {Lv}v∈2<ω ,
respectively, where J∅ = L∅ = [0, 1]. If both J and L have the property (E), then the continuous t-norms ([0, 1], ∗A)
and ([0, 1], ∗B) are isomorphic.

Proof of Fact 1. Since A and B are generalized Cantor Sets and J∅ = L∅ = [0, 1], they are both nowhere dense
(by [5, Therorem 977]), which in conjunction with (2.viii) leads to

Υ([0, 1], ∗A) = I∗A
P ∪ I∗A

Ł ∪ I∗A
M = KA ∪∅ ∪∅ = KA,

Υ([0, 1], ∗B) = I∗B
P ∪ I∗B

Ł ∪ I∗B
M = KB ∪∅ ∪∅ = KB.

Since both J and L have the property (E), (Υ([0, 1], ∗A),≺) = (KA,≺) and (Υ([0, 1], ∗B),≺) = (KB,≺) are count-
able dense orders without endpoints, which are necessarily isomorphic by [5, Therorem 541]. Hence, Theorem 2.5
guarantees that ([0, 1], ∗A) and ([0, 1], ∗B) are isomorphic.

Fact 2. Let A and B be generalized Cantor Sets generated by the Cantor systems J = {Ju}u∈2<ω and L = {Lv}v∈2<ω ,
respectively, where J∅ = L∅ = [0, 1]. If J has the property (E) but L does not, then the continuous t-norms ([0, 1], ∗A)
and ([0, 1], ∗B) are not isomorphic.

Proof of Fact 2. Analogously to the above proof, we know that (Υ([0, 1], ∗A),≺) = (KA,≺) is a countable dense
order without endpoints, and Υ([0, 1], ∗B) = KB. By Theorem 2.5, it suffices to show that the orders (KA,≺) and
(KB,≺) are not isomorphic when L does not have the property (E). To this end, we show that (KB,≺) either has an
endpoint or is not dense.

Let l(I) (resp. r(I)) denote the left (resp. right) endpoint of an interval I, respectively. Since L does not have the
property (E), there exists v ∈ 2<ω such that l(Lv) , l(Lv⌢0) or r(Lv) , r(Lv⌢1). Suppose that l(Lv) , l(Lv⌢0). Then
there are two cases:

• l(Lv) = 0. In this case, (0, l(Lv⌢0) is the minimum element of (KB,≺).

• l(Lv⌢0) > l(Lv) > 0. In this case, by the construction of B, there exists (an, bn) ∈ KB such that bn = l(Lv). Thus,
(l(Lv), l(Lv⌢0)) is an immediate successor of (an, bn) in (KB,≺), which means that (KB,≺) is not dense.

If r(Lv) , r(Lv⌢1), it can be proved similarly that (KB,≺) either has a maximum element or is not dense.
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3. Reducibility of equivalence relations

A topological space is Polish if it is separable and completely metrizable. The following properties of Polish
spaces are well known (see, e.g., [13, Proposition 3.3]):

Proposition 3.1. A closed subspace of a Polish space is Polish; a countable product of Polish spaces is Polish.

Note that by [13, Theorem 4.19], the set C of continuous functions from [0, 1] × [0, 1] to [0, 1] becomes a Polish
space by taking the sup metric

d∞( f1, f2) = sup{| f1(x, y) − f2(x, y)| | (x, y) ∈ [0, 1] × [0, 1]}. (3.i)

In what follows we always assume that C is equipped with the topology induced by the metric d∞.

Proposition 3.2. The subset T of C consisting of continuous t-norms on [0, 1] is closed. Hence, as a subspace of C,
T is also a Polish space.

Proof. It is straightforward to check that the limit of a sequence of continuous t-norms on [0, 1] in C is also a contin-
uous t-norm. Thus T is a closed subspace of C, and hence it is Polish by Proposition 3.1.

Let X, Y be Polish spaces, and let E, F be equivalence relations on X, Y , respectively. We record some basic
notions about Borel reducibility [13, 9]:

(B1) A ⊆ X is Borel if it belongs to the smallest σ-algebra on X containing all open sets of X.

(B2) A ⊆ X is analytic (or Σ1
1) if there exists a Polish space Z and a continuous function f : Z → X such that

f (Z) = A.

(B3) A ⊆ X is complete analytic if A is analytic, and for each analytic subset C of a zero-dimensional Polish space
Z, there exists a continuous function f : Z → X such that C = f −1(A).

(B4) A function f : X → Y is Borel if f −1(V) is Borel for any Borel (equivalently, open or closed) set V of Y . In
particular, if Y has a countable subbasis {Vn}n∈ω, then f is Borel provided that f −1(Vn) is Borel for all n ∈ ω.

(B5) A function f : X → Y is a reduction from (X, E) to (Y, F) if

x1Ex2 ⇐⇒ f (x1)F f (x2)

for all x1, x2 ∈ X.

(B6) (X, E) is continuously (resp. Borel) reducible to (Y, F), denoted by

(X, E) ⩽C (Y, F) (resp. (X, E) ⩽B (Y, F)),

if there exists a continuous (resp. Borel) function f : X → Y such that f : (X, E)→ (Y, F) is a reduction.

(B7) (X, E) and (Y, F) are continuously (resp. Borel) bireducible to each other, denoted by

(X, E) ∼C (Y, F) (resp. (X, E) ∼B (Y, F)),

if (X, E) ⩽C (Y, F) and (Y, F) ⩽C (X, E) (resp. (X, E) ⩽B (Y, F) and (Y, F) ⩽B (X, E)).

Lemma 3.3. Let f : X → Y be a Borel function between Polish spaces. If B ⊆ Y is analytic and f −1(B) ⊆ X is
complete analytic, then B is also complete analytic.

Proof. Let C be an analytic subset of a zero-dimensional Polish space Z. Since f −1(B) is complete analytic, there
exists a continuous function h : Z → X such that C = h−1 f −1(B). Thus f h : Z → Y is a Borel function satisfying
C = ( f h)−1(B); since Y is a Polish space and B is analytic, the existence of such a Borel function is enough to
guarantee that B is complete analytic (cf. the last paragraph of [13, 26.C]).

6



Lemma 3.4. Suppose that (X, E) is Borel bireducible with (Y, F), where E and F are equivalence relations on Polish
spaces X and Y, respectively. Then E is a complete analytic subset of X × X (under the product topology) if, and only
if, F is a complete analytic subset of Y × Y.

Proof. By definition, there exist Borel functions f : X → Y , g : Y → X such that

x1Ex2 ⇐⇒ f (x1)F f (x2) and y1Fy2 ⇐⇒ g(y1)Fg(y2)

for all x1, x2 ∈ X, y1, y2 ∈ Y . Thus, it is easy to see that

f × f : X × X → Y × Y and g × g : Y × Y → X × X

are both Borel functions between Polish spaces.
Suppose that E = ( f × f )−1(F) is a completely analytic subset of X × X. Then F = (g× g)−1(E) is analytic by [13,

Proposition 14.4], and consequently F is a completely analytic subset of Y × Y by Lemma 3.3. Conversely, a similar
argument shows that E is completely analytic if so is F.

4. The complexity of the isomorphism relation between continuous t-norms

Recall that a finite relational language is a set L = {Ri}i∈I , where I is finite and each Ri is assigned to an element
ni ∈ ω (i ∈ I), meaning that Ri is an ni-ary relation symbol. Let 2 = {0, 1} be equipped with the discrete topology. We
denote by

Mod(L) :=
∏
i∈I

2ω
ni (4.i)

the set of L-structures with the underlying set ω, whose elements are of the form

S = {(RS
i )i∈I | ∀i ∈ I : RS

i ⊆ ω
ni } ∈

∏
i∈I

2ω
ni
. (4.ii)

As an immediate consequence of Lemma 3.1, Mod(L) is a compact Polish space under the product topology. We say
that S 1, S 2 ∈ Mod(L) are isomorphic, denoted by

S 1 �L S 2,

if there exists a bijection ξ : ω→ ω such that

(k1, . . . , kni ) ∈ RS 1
i ⇐⇒ (ξ(k1), . . . , ξ(kni )) ∈ RS 2

i (4.iii)

for all i ∈ I and (k1, . . . , kni ) ∈ ω
ni .

Let
L1 = {<,RP,RŁ,RM},

where < is a binary relation symbol and RP,RŁ,RM are unary relation symbols. By (4.i) and (4.ii), each S ∈ Mod(L1)
is a quadruple

(<S ,RS
P,R

S
Ł ,R

S
M) ∈ 2ω

2
× 2ω × 2ω × 2ω.

Arrange elements of Q ∩ [0, 1] in a non-repeating sequence {qn}n∈ω. For each continuous t-norm ([0, 1], ∗), define

n∗xy :=

min {n ∈ ω | qn ∈ (x, y)} if (x, y) ∈ I∗P ∪ I∗Ł,
min {n ∈ ω | qn ∈ [x, y]} if (x, y) ∈ I∗M ,

(4.iv)

which intuitively replaces each interval (x, y) ∈ Υ([0, 1], ∗) with a natural number n∗xy. Let

S ∗ = (<S ∗ ,RS ∗
P ,R

S ∗
Ł ,R

S ∗
M )

be the L1-structure given by

m <S ∗ n ⇐⇒ ∃(x, y), (x′, y′) ∈ Υ([0, 1], ∗) : n∗xy = m & n∗x′y′ = n & (x, y) ≺ (x′, y′) (4.v)

and
RS ∗

i = {n
∗
xy | (x, y) ∈ I∗i } (i ∈ {P,Ł,M}). (4.vi)
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Lemma 4.1. Let m, n ∈ ω.

(1) n ∈ RS ∗
P if, and only if,

(a) qn is non-idempotent,

(b) ∀l ∈ ω \ {0}, (qn)(l)
∗ is non-idempotent, and

(c) ∀i < n, qi ∗ qn = min{qi, qn}.

(2) n ∈ RS ∗
Ł if, and only if,

(a) qn is non-idempotent,

(b) ∃l ∈ ω \ {0}, (qn)(l)
∗ is idempotent, and

(c) ∀i < n, qi ∗ qn = min{qi, qn}.

(3) n ∈ RS ∗
M if, and only if,

(a) qn is idempotent,

(b) ∃l ∈ ω \ {n}, ∀k ∈ ω, qk ∈ (ql, qn) ∪ (qn, ql) =⇒ qk is idempotent, and

(c) ∀i < n, ∃ j ∈ ω, q j ∈ (qi, qn) ∪ (qn, qi) and q j is non-idempotent.

(4) m <S ∗ n if, and only if, m, n ∈ RS ∗
P ∪ RS ∗

Ł ∪ RS ∗
M and qm < qn.

Proof. (1) If n ∈ RS ∗
P , then n = n∗xy for some (x, y) ∈ I∗P (by (4.vi)); that is, qn ∈ (x, y) and qi < (x, y) for all i < n (by

(4.iv)). Hence, (a) and (c) follow from Lemma 2.4. Moreover, (b) holds because ([x, y], ∗) �t ([0, 1], ∗P) implies that
every q ∈ (x, y) is non-idempotent and non-nilpotent.

Conversely, if qn is non-idempotent, then there exists (x, y) ∈ I∗P ∪ I∗Ł such that qn ∈ (x, y) (by Lemma 2.4). Note
that qn is a non-nilpotent element of ([x, y], ∗) by (b); otherwise, if (qn)(l)

∗ = x for some l ∈ ω \ {0}, then (qn)(l)
∗ is

idempotent, which violates (b). Thus it follows from Lemma 2.3(1) that (x, y) < I∗Ł, and consequently (x, y) ∈ I∗P.
Finally, by (c) and Lemma 2.3(2) we have qi < (x, y) for all i < n. Hence n = n∗xy ∈ RS ∗

P .
(2) The proof is mostly similar to (1), where the only difference is (b). For the necessity, (b) follows from the fact

that qn is nilpotent (by Lemma 2.3(1)). Conversely, for the sufficiency, (b) implies that the interval (x, y) in I∗P ∪ I∗Ł
containing qn cannot be in I∗P.

(3) If n ∈ RS ∗
M , then n = n∗xy for some (x, y) ∈ I∗M (by (4.vi)); that is, qn ∈ [x, y] and qi < [x, y] for all i < n (by

(4.iv)). Thus qn must be idempotent; because by the continuity of ∗, the endpoints of intervals in I∗M are necessarily
idempotent.

For (c), let i < n. Since qi < [x, y], there exist non-idempotent elements in (qi, qn) ∪ (qn, qi) (by the definition of
I∗M). Thus, by the density of {q j} j∈ω in [0, 1] we find j ∈ ω such that q j ∈ (qi, qn) ∪ (qn, qi) and q j is non-idempotent.

For (b), since every q ∈ [x, y] is idempotent, by the density of {q j} j∈ω in [0, 1] we may choose l ∈ ω \ {n} such that
ql ∈ [x, qn) ∪ (qn, y]. Then qk is idempotent whenever qk ∈ (ql, qn) ∪ (qn, ql).

Conversely, from (a) and (b) we see that every q ∈ Q ∩ ((ql, qn) ∪ (qn, ql)) is idempotent, and thus, by Lemma
2.4, (ql, qn) ∪ (qn, ql) is a nonempty interval of idempotent elements. Therefore, there exists (x, y) ∈ I∗M such that
[ql, qn] ∪ [qn, ql] ⊆ [x, y]. Finally, (c) guarantees n∗xy = n, because there exists a non-idempotent element q j ∈

(qi, qn) ∪ (qn, qi) for all i < n, which means that qi < [x, y]. Thus n ∈ RS ∗
M .

(4) If m <S ∗ n, by (4.v) we find (x, y), (x′, y′) ∈ Υ([0, 1], ∗) such that n∗xy = m, n∗x′y′ = n and (x, y) ≺ (x′, y′). Thus
m, n ∈ RS ∗

P ∪ RS ∗
Ł ∪ RS ∗

M and qm ∈ (x, y), qn ∈ (x′, y′) (by (4.iv) and (4.vi)), and consequently qm < qn (by (2.ii)).
Conversely, if m, n ∈ RS ∗

P ∪ RS ∗
Ł ∪ RS ∗

M and qm < qn, then there exist (x, y), (x′, y′) ∈ Υ([0, 1], ∗) such that n∗xy = m,
n∗x′y′ = n and (x, y) ≺ (x′, y′) (by (4.iv) and (4.vi)), which means that m <S ∗ n (by (4.v)).

Proposition 4.2. (T ,�t) ⩽B (Mod(L1),�L1 ).
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Proof. We show that
Θ : (T ,�t)→ (Mod(L1),�L1 ), Θ([0, 1], ∗) = S ∗

is a Borel reduction.
Step 1. Θ is a reduction. Given continuous t-norms ([0, 1], ∗) and ([0, 1], •), we verify that

([0, 1], ∗) �t ([0, 1], •) ⇐⇒ S ∗ �L1 S •.

On one hand, if ([0, 1], ∗) �t ([0, 1], •), then by Theorem 2.5, there is an order isomorphism (2.iv) satisfying (2.v).
Write (xΦ, yΦ) := Φ(x, y) ∈ Υ([0, 1], •) for each (x, y) ∈ Υ([0, 1], ∗). Note that both

ω \ {n∗xy | (x, y) ∈ Υ([0, 1], ∗)} and ω \ {n•x′y′ | (x′, y′) ∈ Υ([0, 1], •)} = ω \ {n•xΦyΦ | (x, y) ∈ Υ([0, 1], ∗)} (4.vii)

are countably infinite sets, because each interval (x, y) ∈ Υ([0, 1], ∗) and the corresponding (xΦ, yΦ) ∈ Υ([0, 1], •) have
infinitely many elements of the sequence {qn}n∈ω (recall that {qn}n∈ω = Q ∩ [0, 1]), but in (4.vii) only one element is
removed from each (x, y) and (xΦ, yΦ) (i.e., n∗xy and n•xΦyΦ ), respectively. Thus, there exists a bijection

η : ω \ {n∗xy | (x, y) ∈ Υ([0, 1], ∗)} → ω \ {n•xΦyΦ | (x, y) ∈ Υ([0, 1], ∗)}.

Define

ξ : ω→ ω, ξ(n) =

n•xΦyΦ if n = n∗xy for some (x, y) ∈ Υ([0, 1], ∗),
η(n) else.

Then ξ is a bijection, and it follows immediately from the definition of S ∗ and S • (see (4.v) and (4.vi)) that ξ satisfies
(4.iii). Hence S ∗ �L1 S •.

On the other hand, if S ∗ �L1 S •, then there exists a bijection ξ : ω→ ω satisfying (4.iii); that is,

n ∈ RS ∗
i ⇐⇒ ξ(n) ∈ RS •

i (i ∈ {P,Ł,M}). (4.viii)

Thus, for each i ∈ {P,Ł,M} and (x, y) ∈ I∗i , we have n∗xy ∈ RS ∗
i , and consequently ξ(n∗xy) ∈ RS •

i , which means that there
exists (xΦ, yΦ) ∈ I•i such that ξ(n∗xy) = n•xΦyΦ (by (4.vi)). Define

Φ : Υ([0, 1], ∗)→ Υ([0, 1], •), Φ(x, y) = (xΦ, yΦ).

Then Φ is an order isomorphism by (4.v), and satisfies (2.v) by (4.vi) and (4.viii). Hence ([0, 1], ∗) �t ([0, 1], •) by
Theorem 2.5.

Step 2. Θ : T → Mod(L1) is a Borel function. Fix a bijection

ω→ ω × ω, n 7→ (ι(n), κ(n)).

Note that
D = {Uk

i,n | i ∈ {<, P,Ł,M}, n ∈ ω, k ∈ {0, 1}}

is a countable subbasis of Mod(L1) = 2ω
2
× 2ω × 2ω × 2ω, where

• U0
<,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | ι(n) ≮S κ(n)}, U1

<,n = {(<
S ,RS

P,R
S
Ł ,R

S
M) ∈ Mod(L1) | ι(n) <S κ(n)},

• U0
P,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | n < RS

P}, U1
P,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | n ∈ RS

P},

• U0
Ł,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | n < RS

Ł}, U1
Ł,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | n ∈ RS

Ł},

• U0
M,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | n < RS

M}, U1
M,n = {(<

S ,RS
P,R

S
Ł ,R

S
M) ∈ Mod(L1) | n ∈ RS

M}.

It suffices to check that Θ−1(Uk
i,n) is Borel for all Uk

i,n ∈ D. To this end, we consider the following sets for q ∈ [0, 1]
and m, n, l ∈ ω:

• V(q) = {([0, 1], ∗) ∈ T | q is an idempotent element of ∗};
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• U(m, n) = {([0, 1], ∗) ∈ T | qm ∗ qn = min{qm, qn}};

• V(l, n) = V((qn)(l)
∗ );

• W(m, n) = {([0, 1], ∗) ∈ T | qm < qn}.

It is easy to see that V(q), U(m, n) and V(l, n) are all closed subsets of the metric space (T , d∞) (cf. (3.i)), and W(m, n)
is either T or ∅. Therefore, the conclusion is an immediate consequence of the following expressions obtained by
Lemma 4.1:

Θ−1(U1
P,n) = (T \ V(qn)) ∩

( ⋂
l∈ω\{0}

(T \ V(l, n))
)
∩
(⋂

i<n

U(i, n)
)
,

Θ−1(U1
Ł,n) = (T \ V(qn)) ∩

( ⋃
l∈ω\{0}

V(l, n)
)
∩
(⋂

i<n

U(i, n)
)
,

Θ−1(U1
M,n) = V(qn) ∩

( ⋃
l∈ω\{n}

⋂
{V(q) | q ∈ Q ∩ ((ql, qn) ∪ (qn, ql))}

)
∩
(⋂

i<n

⋃
{T \ V(q) | q ∈ Q ∩ ((qi, qn) ∪ (qn, qi))}

)
,

Θ−1(U1
<,n) =

( ⋃
i∈{P,Ł,M}

Θ−1(U1
i,ι(n))
)
∩
( ⋃

i∈{P,Ł,M}

Θ−1(U1
i,κ(n))
)
∩W(ι(n), κ(n)),

Θ−1(U0
i,n) = Θ−1(Mod(L1) \ U1

i,n) = T \ Θ−1(U1
i,n) (i ∈ {<, P,Ł,M}).

Let L0 = {<}, where < is a binary relation symbol; let

LO := {<S | <S is a (strict) linear order on ω} ⊆ Mod(L0). (4.ix)

It is easy to check that LO is a closed subspace of Mod(L0), and thus a Polish space by Lemma 3.1. For <S 1 , <S 2∈ LO,
it is clear that <S 1�L0<

S 2 if and only if (ω, <S 1 ) and (ω, <S 2 ) are order isomorphic. Considering the restriction of the
equivalence relation �L0 on LO, the following result is well known:

Lemma 4.3. (See [8, Theorem 3] and [12, Theorem 4.10]) (Mod(L1),�L1 ) ∼B (LO,�L0 ).

Since the Borel reducibility ⩽B is transitive, from Theorem 4.2 and Lemma 4.3 we immediately have:

Proposition 4.4. (T ,�t) ⩽B (LO,�L0 ).

Conversely, we have the following proposition:

Proposition 4.5. (LO,�L0 ) ⩽C (T ,�t).

Proof. Step 1. For each (strict) linear order ⋖ onω, we define a sequence of disjoint open intervals {I⋖n = (a⋖n , b
⋖
n )}n∈ω

such that the following properties hold for all m, n ∈ ω:

(a) 0 < a⋖n < b⋖n < 1;

(b) I⋖m ≺ I⋖n whenever m ⋖ n, where the order ≺ is defined in the same way as in (2.ii);

(c) b⋖m < a⋖n whenever m ⋖ n;

(d) |In| =
1

3n+1 , where |In| refers to the length of In;

(e) min{a⋖
n , 1 − b⋖

n , a⋖n − b⋖
m } ⩾

1
3n+1 whenever m ⋖ n.
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We proceed by induction. First, let

I0 = (a⋖0 , b
⋖
0 ) =

(1
3
,

2
3

)
.

Second, we consider

x1 =

0 if 1 ⋖ 0
b⋖

0 if 0 ⋖ 1
and y1 =

a⋖0 if 1 ⋖ 0
1 if 0 ⋖ 1,

and define I⋖1 = (a⋖1 , b
⋖
1 ) with

a⋖1 =
1
2

(
x1 + y1 −

1
9

)
and b⋖1 =

1
2

(
x1 + y1 +

1
9

)
,

which clearly satisfies (a)–(e). In general, suppose that we have defined I⋖k (0 ⩽ k ⩽ n − 1) (n ∈ ω \ {0}) satisfying
(a)–(e). Then we consider

xn = max({0} ∪ {b⋖k | k ⋖ n & k < n}) and yn = min({a⋖k | n ⋖ k & k < n} ∪ {1}),

and define I⋖n = (a⋖n , b
⋖
n ) with

a⋖
n =

1
2

(
xn + yn −

1
3n+1

)
and b⋖n =

1
2

(
xn + yn +

1
3n+1

)
.

It is straightforward to check that In also satisfies (a)–(e). Thus, we have I⋖n = (a⋖n , b
⋖
n ) defined for all n ∈ ω.

Step 2. For each ⋖ ∈ LO, by (2.i) we may define a continuous t-norm

([0, 1], ∗⋖) = ([a⋖n , b
⋖
n ], ∗⋖)n∈ω (4.x)

where

x ∗⋖ y = a⋖n +
(x − a⋖

n )(y − a⋖n )
b⋖n − a⋖n

for all x, y ∈ [a⋖n , b
⋖
n ]. For any n ∈ ω, it is easy to see that ([a⋖n , b

⋖
n ], ∗⋖) is isomorphic to the product t-norm

([0, 1], ∗P), and it is completely determined by the interval I⋖n = (a⋖
n , b

⋖
n ); that is, for any ∗⋖1 , ∗⋖2 ∈ LO,

I⋖1
n = I⋖2

n =⇒ ([a⋖1
n , b⋖1

n ], ∗⋖1 ) = ([a⋖2
n , b⋖2

n ], ∗⋖2 ). (4.xi)

We show that the map
θ : LO→ T , ⋖ 7→ ([0, 1], ∗⋖)

is continuous. To this end, for each ⋖0 ∈ LO and ε > 0, we have to find an open neighborhood V of ⋖0 in LO such
that

θ(V) ⊆ B(([0, 1], ∗⋖0 ), ε),

where the latter is an open ball in the metric space (T , d∞) (cf. (3.i)). Indeed, it follows from (d) that there exists
N ∈ ω \ {0} such that ∑

n⩾N

|I⋖n | <
ε

2
(4.xii)

for all ⋖ ∈ LO. By (4.i) and (4.ix),

V = {⋖ ∈ LO | ⋖|N×N = ⋖0|N×N} = {⋖ ∈ Mod(L0) = 2ω×ω | ⋖|N×N = ⋖0|N×N} ∩ LO

is open in LO, where N = {n ∈ ω | 0 ⩽ n ⩽ N − 1} and ⋖|N×N = ⋖∩ (N × N). Since it is clear that ⋖0 ∈ V , it remains
to show that

d∞(∗⋖, ∗⋖0 ) = sup{|x ∗⋖ y − x ∗⋖0 y| | x, y ∈ [0, 1]} < ε (4.xiii)

for all ⋖ ∈ V . Indeed, by the constructions of V , {I⋖n }n∈ω and {I⋖0
n }n∈ω we have⋃

n<N

I⋖n =
⋃
n<N

I⋖0
n . (4.xiv)

Thus, if x ∗⋖ y , x ∗⋖0 y, then either x, y ∈ I⋖m or x, y ∈ I⋖0
m for some m ⩾ N. Otherwise,
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• if there exists no n ∈ ω such that x, y ∈ I⋖n or x, y ∈ I⋖0
n , then x ∗⋖ y = min{x, y} = x ∗⋖0 y (by Lemma 2.4);

• if x, y ∈ I⋖n = I⋖0
n for some n < N (by (4.xiv)), then x ∗⋖ y = x ∗⋖0 y (by (4.xi)).

So, there are three cases:

• x, y ∈ I⋖m for some m ⩾ N, but (x, y) < I⋖0
n for all n ⩾ N. In this case, we have

x ∗⋖ y ∈ (am, bm) and x ∗⋖0 y = min{x, y} ∈ (am, bm),

and it follows from (4.xii) that
|x ∗⋖ y − x ∗⋖0 y| ⩽ |I⋖m | <

ε

2
. (4.xv)

• x, y ∈ I⋖0
m for some m ⩾ N, but (x, y) < I⋖n for all n ⩾ N. In this case, we may prove (4.xv) analogously to the

first case.

• x, y ∈ I⋖m ∩ I⋖0
n for some m, n ⩾ N. In this case, by (4.xii) we also have

|x ∗⋖ y − x ∗⋖0 y| ⩽ |I⋖0
m | + |I

⋖
n | <

ε

2
.

Therefore, the desired inequality (4.xiii) is obtained.
Step 3. θ : (LO,�L0 ) → (T ,�t) is a reduction. Indeed, for any ⋖1,⋖2 ∈ LO, by the construction (4.x) we

immediately see that there exists an order isomorphism

f : (ω,⋖1)→ (ω,⋖2)

if, and only if, there exists an order isomorphism

Φ : Υ([0, 1], ∗⋖1 )→ Υ([0, 1], ∗⋖2 )

satisfying (2.v). Therefore, it follows from Theorem 2.5 that

⋖1 �L0 ⋖2 ⇐⇒ ([0, 1], ∗⋖1 ) �t ([0, 1], ∗⋖2 ),

which completes the proof.

Since every continuous function is a Borel function, our main result arises from the combinations of Propositions
4.4 and 4.5:

Theorem 4.6. (T ,�t) ∼B (LO,�L0 ).

It is well known that the restriction of the isomorphism relation �L0 on LO, i.e., �L0 ∩(LO×LO), is a complete
analytic subset of LO×LO; see, e.g., [8, Theorems 3 and 4]. Therefore, the following corollary is an immediate
consequence of Lemma 3.4 and Theorem 4.6:

Corollary 4.7. The isomorphism relation �t is a complete analytic subset of T × T .

Recall that an equivalence relation E on a Polish space X is smooth (or concretely classifiable) (see, e.g., [9,
Definition 5.4.1]), if

(X, E) ⩽B (2ω, id(2ω)),

where 2 = {0, 1} is equipped with the discrete topology, and id(2ω) is the identity relation on 2ω; that is, if there exists
a Borel function

f : X → 2ω with xEy ⇐⇒ f (x) = f (y).

Note that E = ( f × f )−1(id(2ω)) is a Borel subset of X × X under the product topology, because id(2ω) is closed in
2ω × 2ω and it is easy to see that f × f is Borel. However, complete analytic subsets cannot be Borel (as a direct
consequence of [13, Corollary 26.2]), and thus Corollary 4.7 implies the following:
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Corollary 4.8. The equivalence relation �t is not smooth.

Example 4.9. Note that (LO,�L0 ) is Borel complete (see [8, Theorem 3] and [9, Theorem 13.3.2]); that is, it is Borel
bireducible with the universal S∞-orbit equivalence relation (see [9, Definition 13.1.1]). Therefore, our Theorem 4.6
indicates that every Borel complete equivalence relation is Borel bireducible with (T ,�t). For example:

• the isomorphism relation between countable graphs (see [9, Theorem 13.1.2]);

• the isomorphism relation between countable groups (see [9, Theorem 13.4.1]);

• the isomorphism relation between countable Boolean algebras [3];

• the homeomorphism relation between separable Boolean spaces (i.e., zero-dimensional compact metrizable
spaces) [3];

• the isomorphism relation between commutative almost finite-dimensional C∗-algebra [3];

• the equivalence relation of isometry between Polish ultrametric spaces (see [10, Theorem 4]);

• the isomorphism relation between countable torsion-free abelian groups with domain ω [19].
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