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Abstract
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1. Introduction

The (covariant) powerset monad
P = (P, {−},∪) (1.i)

on the category Set is well known (see, e.g., [4, Example II.3.1.1] or [18, Example 5.1.5]). Explicitly:

• the functor P : Set // Set sends each (crisp) set X to its powerset PX, and each map f : X // Y to

f→ : PX // PY, A 7→ { f x | x ∈ A}; (1.ii)

• the unit is given by
{−} : X // PX, x 7→ {x}; (1.iii)

• the multiplication is given by
∪ : PPX // PX, A 7→

⋃
A. (1.iv)

The Eilenberg-Moore category of this monad is exactly the category Sup of complete lattices and join-preserving
maps. In other words, Sup is strictly monadic over Set. More precisely:

• since (1.ii) is always a join-preserving map between complete lattices, there is a functorP : Set //Sup obtained
by replacing the codomain of P with Sup;

• P is left adjoint to the forgetful functor U : Sup // Set, and the induced monad on Set is (1.i);

• the right adjoint functor U : Sup // Set is strictly monadic.

Now, let Q be a small involutive quantaloid [20]. From the viewpoint of category theory, it is natural to consider
the Q-enriched version of the monad (1.i). The following results are already known:
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• The category Q-Sup of separated complete Q-categories and left adjoint Q-functors is strictly monadic over
the category Q-Cat of Q-categories and Q-functors [26].

• Q-Sup is strictly monadic over the slice category Set/Q0, where Q0 is the set of objects of Q [17].

When Q = 2, the two-element Boolean algebra, these results reduce to the strict monadicity of Sup over Ord and Set,
respectively, where Ord refers to the category of preordered sets and order-preserving maps. In other words, both the

forgetful functors Uc : Q-Sup //Q-Cat and U = (Q-Sup
Uc //Q-Cat

U0 // Set/Q0) are strictly monadic.
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Therefore, the classical notion of powerset may be extended to the Q-enriched version as follows:

• The “power” of a Q-category X is given by its image under UcPc (where Pc ⊣ Uc), which is precisely the
Q-category PX of presheaves on X.

• The “power” of a Q0-typed set X (i.e., a set X equipped with a map |-| : X //Q0) is given by its image under
UP (where P ⊣ U), which is precisely the underlying Q0-typed set of the presheaf Q-category of the discrete
Q-category X.

Let us look again at the special case of Q = 2. Since

(P : Set // Set) = (Set
P
// Sup U // Set),

there are two steps to obtain the powerset of a set X:

• first, generate the complete lattice PX of all subsets of X (ordered by inclusion “⊆”) under the functor P;

• second, forget the order “⊆” on PX under the functor U.

As the motivation of this paper, we point out that there is another interpretation of the second step: the discrete set PX
may also be regarded as the symmetrization of the partially ordered set (PX,⊆).

However, for a general (small involutive) quantaloid Q, the symmetrization of a presheaf Q-category PX is far
more complicated than the underlying Q0-typed set of PX. It is now natural to ask what happens if the node Set/Q0
in the first triangle of (1.v) is replaced by Q-SymCat, the full subcategory of Q-Cat consisting of symmetric Q-
categories. More specifically, with (−)s : Q-Cat //Q-SymCat denoting the symmetrization functor:

Question 1.1. Is the composite functor

Us = (Q-Sup
Uc //Q-Cat

(−)s //Q-SymCat) (1.vi)

monadic?
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⊥
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(1.vii)
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This question is of crucial importance in the study of quantale-valued sets [10, 5, 6, 7, 8, 9]. Let

Q = (Q,&, k, ◦)

be an involutive quantale [16], considered as the table of truth values. Recall that a Q-set [9] is exactly a symmetric
category enriched in a quantaloid D∗(Q) constructed from Q (cf. Definition 4.1 and [9, Proposition 6.3]). The category

Q-Set := D∗(Q)-SymCat

of Q-sets is precisely the category of symmetric D∗(Q)-categories. So, the following question becomes a special case
of Question 1.1:

Question 1.2. What is the Q-powerset of a Q-set?

The main result of this paper, Theorem 3.10, gives an affirmative answer to Question 1.1. Therefore, all the three
forgetful functors in the diagram

Q-Cat Q-SymCatoo ? _

Q-Sup

Q-Cat

Uc

��

Q-Sup

Q-SymCat

Us

%%

Q-SymCat Set/Q0oo ? _

Q-Sup

Set/Q0

U

**

are strictly monadic, and consequently:

• The “power” of a symmetric Q-category X is given by its image under UsPs (wherePs ⊣ Us), which is precisely
the symmetrization of the presheaf Q-category of X.

In particular, for an involutive quantale Q, the monad generated by the adjunction Ps ⊣ Us provides an explicit
answer to Question 1.2; that is,

• The “Q-powerset” of a Q-set X is given by its image under UsPs (where Ps ⊣ Us), which is precisely the
symmetrization of the presheaf D∗(Q)-category of X.

Therefore, the Q-powerset monad on Q-Set is precisely formulated, and we elaborate the details of its components in
Section 4.

2. Categories and symmetric categories enriched in a quantaloid

Complete lattices and join-preserving maps constitute a symmetric monoidal closed category Sup [11]. A quan-
taloid [20] Q is a category enriched in Sup; that is, a category whose hom-sets are complete lattices, such that the
composition of Q-arrows preserves joins on both sides, i.e.,

v ◦
(∨

i∈I

ui

)
=
∨
i∈I

v ◦ ui and
(∨

i∈I

vi

)
◦ u =

∨
i∈I

vi ◦ u

for all Q-arrows u, ui : p // q, v, vi : q // r (i ∈ I). The corresponding right adjoints induced by the compositions

(− ◦ u) ⊣ (− ↙ u) : Q(p, r) //Q(q, r) and (v ◦ −) ⊣ (v↘ −) : Q(p, r) //Q(p, q)

satisfy
v ◦ u ⩽ w ⇐⇒ v ⩽ w↙ u ⇐⇒ u ⩽ v↘ w

for all Q-arrows u : p // q, v : q // r, w : p // r, where ↙ and ↘ are called left and right implications in Q,
respectively.
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A homomorphism of quantaloids is a functor of the underlying categories that preserves joins of morphisms. A
quantaloid Q is involutive if it is equipped with an involution; that is, a homomorphism

(−)◦ : Qop //Q (2.i)

of quantaloids with
q◦ = q and u◦◦ = u

for all q ∈ Q0(= obQ) and Q-arrows u : p // q, which necessarily satisfies

(1q)◦ = 1q, (v ◦ u)◦ = u◦ ◦ v◦ and
(∨

i∈I

ui

)◦
=
∨
i∈I

u◦i

for all q ∈ obQ and Q-arrows u, ui : p // q, v : q // r (i ∈ I).
Throughout this paper, we let Q denote a small involutive quantaloid; that is, Q has a set Q0 of objects, and Q is

equipped with an involution (2.i).
A Q0-typed set X is a set X equipped with a type map |-| : X // Q0. With type-preserving maps as morphisms,

i.e., maps f : X // Y satisfying |x| = | f x| for all x ∈ X, we obtain a category

Set/Q0.

A Q-relation φ : X //7 Y between Q0-typed sets consists of a family of Q-arrows φ(x, y) ∈ Q(|x|, |y|) (x ∈ X, y ∈
Y). Q0-typed sets and Q-relations constitute a (not necessarily involutive!) quantaloid Q-Rel, in which

• the local order is inherited from Q, i.e.,

φ ⩽ ψ : X //7 Y ⇐⇒ ∀x ∈ X, ∀y ∈ Y : φ(x, y) ⩽ ψ(x, y);

• the composition and implications of Q-relations φ : X //7 Y , ψ : Y //7 Z, η : X //7 Z are given by

ψ ◦ φ : X //7 Z, (ψ ◦ φ)(x, z) =
∨
y∈Y

ψ(y, z) ◦ φ(x, y),

η↙ φ : Y //7 Z, (η↙ φ)(y, z) =
∧
x∈X

η(x, z)↙ φ(x, y),

ψ↘ η : X //7 Z, (ψ↘ η)(x, y) =
∧
y∈Y

ψ(y, z)↘ η(x, z);

• the identity Q-relation on a Q0-typed set X is given by

idX : X //7 X, idX(x, y) =

1|x| if x = y,
⊥|x|,|y| else,

.

where ⊥|x|,|y| refers to the bottom Q-arrow in Q(|x|, |y|).

A Q-category [20, 23, 25] consists of a Q0-typed set X and a Q-relation α : X //7 X such that idX ⩽ α and
α ◦ α ⩽ α; that is,

1|x| ⩽ α(x, x) and α(y, z) ◦ α(x, y) ⩽ α(x, z)

for all x, y, z ∈ X. The underlying (pre)order of a Q-category (X, α) is given by

x ⩽ y ⇐⇒ |x| = |y| and 1|x| ⩽ α(x, y).

We write x � y if x ⩽ y and y ⩽ x. A Q-category (X, α) is separated (also skeletal) if x = y whenever x � y in its
underlying order.
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A Q-functor (resp. fully faithful Q-functor) f : (X, α) // (Y, β) between Q-categories is a type-preserving map
f : X // Y such that

α(x, x′) ⩽ β( f x, f x′) (resp. α(x, x′) = β( f x, f x′))

for all x, x′ ∈ X. With the pointwise (pre)order between Q-functors given by

f ⩽ g : (X, α) // (Y, β) ⇐⇒ ∀x ∈ X : f x ⩽ gx ⇐⇒ ∀x ∈ X : 1|x| ⩽ β( f x, gx),

Q-categories and Q-functors constitute a locally ordered category

Q-Cat.

A pair of Q-functors f : (X, α) // (Y, β) and g : (Y, β) // (X, α) forms an adjunction in Q-Cat, denoted by f ⊣ g,
if

1X ⩽ g f and f g ⩽ 1Y ,

or equivalently, if
β( f x, y) = α(x, gy)

for all x ∈ X, y ∈ Y . In this case, f is called a left adjoint of g, and g is a right adjoint of f .
A Q-category (X, α) is symmetric [3] if

α(x, y) = α(y, x)◦ (2.ii)

for all x, y ∈ X. The full subcategory of Q-Cat consisting of symmetric Q-categories is denoted by

Q-SymCat.

From each Q-category (X, α) we may construct a symmetric Q-category (X, αs), with

αs(x, y) = α(x, y) ∧ α(y, x)◦ (2.iii)

for all x, y ∈ X. It is clear that f : (X, αs) // (Y, βs) is a Q-functor whenever so is f : (X, α) // (Y, β), giving rise to
the symmetrization functor

(−)s : Q-Cat //Q-SymCat. (2.iv)

In fact, Q-SymCat is a coreflective subcategory of Q-Cat, with (−)s being the coreflector [3]:

Lemma 2.1. Let (X, α), (Y, β) be Q-categories. If (X, α) is symmetric, then f : (X, α) // (Y, β) is a Q-functor if, and
only if, f : (X, α) // (Y, βs) is a Q-functor.

For Q-categories (X, α), (Y, β), a Q-relation φ : X //7 Y becomes a Q-distributor φ : (X, α) //◦ (Y, β) if

β ◦ φ ◦ α ⩽ φ;

that is,
β(y, y′) ◦ φ(x, y) ◦ α(x′, x) ⩽ φ(x′, y′)

for all x, x′ ∈ X, y, y′ ∈ Y . Q-categories and Q-distributors constitute a quantaloid Q-Dist which includes Q-Rel as a
full subquantaloid. Compositions and implications of Q-distributors are computed in the same way as in Q-Rel, and
the identity Q-distributor on a Q-category (X, α) is given by α : (X, α) //◦ (X, α).

Each Q-functor f : (X, α) // (Y, β) induces an adjunction f♮ ⊣ f ♮ in Q-Dist (i.e., α ⩽ f ♮ ◦ f♮ and f♮ ◦ f ♮ ⩽ β),
given by

f♮ : (X, α) //◦ (Y, β), f♮(x, y) = β( f x, y) and f ♮ : (Y, β) //◦ (X, α), f ♮(y, x) = β(y, f x),

called the graph and cograph of f , respectively. Obviously, the identity Q-distributor α is the cograph of the identity
Q-functor 1X : (X, α) // (X, α). Hence, if no confusion arises, in what follows we write

1♮X = α
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for the hom of a Q-category X = (X, α), and write Xs for the symmetrization of X.
For each q ∈ obQ, let {q} denote the (necessarily symmetric) one-object Q-category whose only object has type

q and hom 1q. A presheaf µ (of type q) on a Q-category X is a Q-distributor µ : X //◦ {q}, and presheaves on X
constitute a separated Q-category PX with

1♮PX(µ, µ′) = µ′ ↙ µ

for all µ, µ′ ∈ PX. Dually, the separated Q-category P†X of copresheaves on X consists of Q-distributors λ : {q} //◦ X
with |λ| = q and

1♮
P†X(λ, λ′) = λ′ ↘ λ

for all λ, λ′ ∈ P†X. In particular, for each q ∈ Q0, P{q} (resp. P†{q}) consists of Q-arrows of domain (resp. codomain)
q as objects.

For every Q-functor f : X // Y , it is straightforward to check that

f→ : PX // PY, f→µ = µ ◦ f ♮ and f← : PY // PX, f←λ = λ ◦ f♮ (2.v)

define an adjunction f→ ⊣ f← in Q-Cat.

3. Complete categories enriched in a quantaloid

A Q-category X is complete if the Yoneda embedding

yX : X // PX, x 7→ 1♮X(−, x)

admits a left adjoint supX : PX //X in Q-Cat, which is equivalent to the existence of a right adjoint infX : P†X //X
to the co-Yoneda embedding

y†X : X // P†X, x 7→ 1♮X(x,−).

Remark 3.1. Let X be a complete Q-category. Elaborating the adjunction supX ⊣ yX in details, we obtain that

1♮X(supXµ,−) = 1♮X ↙ µ (3.i)

for all µ ∈ PX. In fact, even if a Q-relation µ : X //7 q (q ∈ Q0) is not a presheaf on X, its supremum supX µ still
exists, and it is an object of X satisfying (3.i). To see this, just note that µ ◦ 1♮X ∈ PX, and

1♮X(supX(µ ◦ 1♮X),−) = 1♮X ↙ (µ ◦ 1♮X) = (1♮X ↙ 1♮X)↙ µ = 1♮X ↙ µ;

that is, supX µ = supX(µ ◦ 1♮X). In particular, the Q-functor supX : PX // X can be extended to

supX : PXs // X,

since a presheaf on Xs is always a Q-relation with domain X.

Example 3.2. For each Q-category X, both PX and P†X are separated complete Q-categories. In particular, for each
Φ ∈ PPX (see [22, Example 2.9]),

supPXΦ = Φ ◦ (yX)♮ =
∨
µ∈PX

Φ(µ) ◦ µ. (3.ii)

In a Q-category X, the tensor of u ∈ P{|x|} and x ∈ X, denoted by u⊗ x, is an object of X of type |u⊗ x| = |u|, such
that

1♮X(u ⊗ x,−) = 1♮X(x,−)↙ u. (3.iii)

X is tensored if u ⊗ x exists for all choices of u and x. The dual notions are cotensors and cotensored Q-categories.
A Q-category X is order-complete if, for any q ∈ Q0,

Xq := {x ∈ X | |x| = q}

admits all joins (or equivalently, all meets) in its underlying order. In particular, if X is separated and order-complete,
then each Xq is a complete lattice.
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Proposition 3.3. (See [24].) A Q-category is complete if, and only if, it is tensored, cotensored and order-complete.

Let X be a complete Q-category and x ∈ X, q ∈ Q0. For each subset {xi | i ∈ I} ⊆ Xq, it follows from [21,
Proposition 3.5.4] that

1♮X
(∨

i∈I

xi, x
)
=
∧
i∈I

1♮X(xi, x) and 1♮X
(
x,
∧
i∈I

xi

)
=
∧
i∈I

1♮X(x, xi), (3.iv)

where the joins and meets of xi (i ∈ I) are computed in the underlying order of X. As a consequence, we deduce the
following lemma that will be useful later:

Lemma 3.4. Let X be a complete Q-category and q ∈ Q0, u ∈ P{q}. Then for each subset {xi | i ∈ I} ⊆ Xq,

u ⊗
(∨

i∈I

xi

)
=
∨
i∈I

u ⊗ xi,

where the joins are computed in the underlying order of X.

Proof. Note that

1♮X
(∨

i∈I

u ⊗ xi,−
)
=
∧
i∈I

1♮X(u ⊗ xi,−) (Equations (3.iv))

=
∧
i∈I

(1♮X(xi,−)↙ u) (Equation (3.iii))

=
(∧

i∈I

(1♮X(xi,−)
)
↙ u

= 1♮X
(∨

i∈I

xi,−
)
↙ u. (Equations (3.iv))

The conclusion thus follows from the definition (3.iii) of tensors.

When the Q-categories under concern are tensored, the Q-functoriality of a type-preserving map between them
can be characterized as follows:

Proposition 3.5. (See [21].) A type-preserving map f : X //Y between tensored Q-categories is a Q-functor if, and
only if,

(1) u ⊗Y f x ⩽ f (u ⊗X x) for all x ∈ X, u ∈ P{|x|}, and

(2) f is an order-preserving map between the underlying ordered sets of X, Y.

Furthermore, left adjoint Q-functors between complete Q-categories have the following equivalent characteriza-
tions:

Proposition 3.6. (See [23, 24].) For a Q-functor f : X //Y between complete Q-categories, the following statements
are equivalent:

(i) f is a left adjoint in Q-Cat.

(ii) f is a left adjoint between the underlying ordered sets of X, Y, and preserves tensors in the sense that f (u⊗X x) =
u ⊗Y f x for all x ∈ X, u ∈ P{|x|}.

(iii) f is sup-preserving in the sense that f supX = supY f→.

Separated complete Q-categories and left adjoint Q-functors (or equivalently, sup-preserving Q-functors) consti-
tute a subcategory of Q-Cat, and we denote it by

Q-Sup.
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It is well known (see, e.g., [23, Proposition 6.11]) that the forgetful functor Uc : Q-Sup //Q-Cat admits a left adjoint

Pc : Q-Cat //Q-Sup,

which sends each Q-functor f : X // Y to the left adjoint Q-functor (see (2.v))

f→ : PX // PY.

Since Lemma 2.1 implies that the inclusion functor Q-SymCat �
�
//Q-Cat is left adjoint to (−)s, it follows soon

that the functor

Ps := (Q-SymCat �
�
//Q-Cat

Pc //Q-Sup)

is left adjoint to

Us := (Q-Sup
Uc //Q-Cat

(−)s //Q-SymCat),

whose unit and counit are given by

{yX : X // (PX)s}X∈Q-SymCat and {supX : PXs // X}X∈Q-Sup,

respectively, where

• yX : X // (PX)s is the symmetrization (see (2.iv)) of the Yoneda embedding yX : X // PX, and

• supX : PXs // X is the extension of supX : PX // X (see Remark 3.1).

The induced monad on Q-SymCat is denoted by

Ps = (Ps, y, supP), (3.v)

where

Ps := (Q-SymCat �
�
//Q-Cat

Pc //Q-Sup
Us //Q-SymCat)

sends each symmetric Q-category X to (PX)s.

Remark 3.7. The unit of the monad Ps is simply {yX : X // (PX)s}X∈Q-SymCat. To understand the multiplication

supPX : PsPsX = (P(PX)s)s // PsX = (PX)s,

just note that it is the symmetrization (see (2.iv)) of the Q-functor

supPX : P(PX)s // PX. (3.vi)

By Remark 3.1, (3.vi) is the extension of the Q-functor

supPX : PPX // PX

described by (3.ii) in Example 3.2. Indeed, the supremum of each Φ ∈ P(PX)s is precisely

supPXΦ = supPX(Φ ◦ 1♮PX) = Φ ◦ 1♮PX ◦ (yX)♮ = Φ ◦ (yX)♮ =
∨
µ∈PX

Φ(µ) ◦ µ,

where yX refers to the original Yoneda embedding X // PX as in Example 3.2.

The purpose of this section is to show that the right adjoint functor Us : Q-Sup //Q-SymCat is strictly monadic.
To this end, we need some preparations.

A Q-closure operator on a Q-category X is a Q-functor c : X // X such that

1X ⩽ c and cc � c.

It is easy to see that each pair of adjoint Q-functors f ⊣ g : Y // X gives rise to a Q-closure operator g f : X // X.
Moreover:
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Proposition 3.8. (See [22].) Let c : X // X be a Q-closure operator, and let

Fix(c) := {x ∈ X | cx � x}

be the Q-subcategory of X consisting of fixed points of c.

(1) The inclusion Q-functor Fix(c) �
�
// X is right adjoint to the codomain restriction c : X // Fix(c) of c.

(2) If X is a complete Q-category, then so is Fix(c).

Recall that in a category C, an object B is called a retract [18] of an object A if there are morphisms f : A // B
and g : B // A such that

f g = 1B.

In this case, f is called a retraction of A onto B, and g is a section of h.

Proposition 3.9. Let (X, α) be a separated complete Q-category, and let Y be a retract of X in Set/Q0, with f : X //Y
being a retraction. Suppose that

(a) f
(∨

i∈I
xi
)
= f
(∨

i∈I
x′i
)

whenever f xi = f x′i for all i ∈ I, and

(b) f (u ⊗ x) = f (u ⊗ x′) whenever f x = f x′ and u ∈ P{|x|}.

Then there exists a section h : Y // X of f such that

(1) (Y, β) is a separated complete Q-category with β(y, y′) = α(hy, hy′) for all y, y′ ∈ Y,

(2) f ⊣ h : (Y, β) // (X, α) in Q-Cat, and

(3) if g : Y // X is a section of f in Set/Q0, then gy ⩽ hy and α(gy, gy′) ⩽ α(hy, hy′) for all y, y′ ∈ Y.

Proof. Let g : Y // X be a section of f in Set/Q0. For each y ∈ Y , define

By := {x ∈ X | f x = y} and hy :=
∨

By, (3.vii)

where the join is computed in the underlying order of the separated complete Q-category (X, α), and it is well defined
because gy ∈ By. Then (a) guarantees that

f hy = f gy = y (3.viii)

for all y ∈ Y; that is, h : Y // X is a section of f in Set/Q0.
Let β(y, y′) = α(hy, hy′) for all y, y′ ∈ Y . Then (Y, β) is clearly a Q-category, which is embedded into (X, α) via

the fully faithful and injective Q-functor h : (Y, β) // (X, α). Next, we show that f : (X, α) // (Y, β) is a Q-functor,
which necessarily follows from the Q-functoriality of h f : (X, α) // (X, α). Since (X, α) is tensored by Proposition
3.3, it suffices to check that h f satisfies the two conditions given in Proposition 3.5.

First, h f preserves the underlying order of (X, α). Suppose that x ⩽ x′. Then

f x′ = f (x ∨ x′) = f (h f x ∨ h f x′),

where the second equality follows from f x = f h f x, f x′ = f h f x′ and (a). Hence h f x ∨ h f x′ ⩽ h f x′ by the definition
of h, and consequently h f x ⩽ h f x′.

Second, u ⊗ h f x ⩽ h f (u ⊗ x) for all x ∈ X, u ∈ P{|x|}. Indeed, note that each z ∈ B f x satisfies f z = f x, and
consequently f (u ⊗ z) = f (u ⊗ x) by (b); that is, u ⊗ z ∈ B f (u⊗x). It follows that

u ⊗ h f x = u ⊗
∨

B f x (Equations (3.vii))

=
∨
{u ⊗ z | z ∈ B f x} (Lemma 3.4)

⩽
∨

B f (u⊗x) (u ⊗ z ∈ B f (u⊗x) if z ∈ B f x)

= h f (u ⊗ x). (Equations (3.vii))
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Therefore, f : (X, α) // (Y, β) is a Q-functor, which already satisfies f h = 1Y by Equation (3.viii). Since 1X ⩽ h f
is an immediate consequence of the definition of h, it follows that

f ⊣ h

in Q-Cat. In particular, h f is a Q-closure operator on the separated complete Q-category (X, α) and, consequently,
the Q-category (Y, β) is separated and complete, because it is isomorphic to the Q-subcategory Fix(h f ) of (X, α) (see
Proposition 3.8).

Finally, for any y, y′ ∈ Y , it is clear that gy ⩽ hy. Since f hy = f gy = y, it follows from (b) that

f (α(gy, gy′) ⊗ hy) = f (α(gy, gy′) ⊗ gy). (3.ix)

Note that
1|y′ | ⩽ α(gy, gy′)↙ α(gy, gy′) = α(α(gy, gy′) ⊗ gy, gy′)

implies that α(gy, gy′) ⊗ gy ⩽ gy′, which in combination with (3.ix) gives rise to

α(gy, gy′) ⊗ hy ⩽ h f (α(gy, gy′) ⊗ hy) = h f (α(gy, gy′) ⊗ gy) ⩽ h f gy′ = hy′.

Hence
1|y′ | ⩽ α(α(gy, gy′) ⊗ hy, hy′) = α(hy, hy′)↙ α(gy, gy′);

that is, α(gy, gy′) ⩽ α(hy, hy′).

Recall that given a functor G : D // C:

• A G-split coequalizer is a pair X
f
//

g
// Y of D-morphisms such that GX

G f
//

Gg
//GY extends to a split coequalizer

diagram

GX GY
G f

//GX GY
Gg

// GYGX

t

aa GY Zh // ZGY
s

hh (3.x)

in C, which means that

h(G f ) = h(Gg), hs = 1Z , (Gg)t = 1GY and (G f )t = sh. (3.xi)

• G strictly creates coequalizers of G-split pairs if, for every G-split coequalizer (3.x), there exists a unique
D-object W and a unique D-morphism k : Y //W such that GW = Z, Gk = h and

X Y
f

//X Y
g

// Y Wk //

is a coequalizer diagram.

• A right adjoint functor G : D // C is strictly monadic if the canonical comparison functor from D to the
Eilenberg-Moore category of the induced monad on C defines an isomorphism of categories (see, e.g., [4,
Section II.3.2] and [18, Section 5.3], for details).

• Beck’s monadicity theorem [1, 14, 18] states that a right adjoint functor G : D // C is strictly monadic if, and
only if, it strictly creates coequalizers of G-split pairs (see, e.g., [18, Theorem 5.5.1 and Exercise 5.5.i]).

Theorem 3.10. The right adjoint functor Us : Q-Sup //Q-SymCat is strictly monadic.
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Proof. It suffices to show that Us : Q-Sup //Q-SymCat strictly creates coequalizers of Us-split pairs. Let

(X, α) (Y, β)
f

//(X, α) (Y, β)
g

//

be a pair of left adjoint Q-functors between separated complete Q-categories such that

(X, αs) (Y, βs)
f

//(X, αs) (Y, βs)
g

// (Y, βs)(X, αs)

t

ff
(Y, βs) (Z, γ)h // (Z, γ)(Y, βs)

s

jj

is a split coequalizer diagram in Q-SymCat, which by Equations (3.xi) means that

h f = hg, hs = 1Z , gt = 1Y and f t = sh. (3.xii)

Step 1. h : Y // Z satisfies the conditions of Proposition 3.9, which induces a section s′ : Z // Y such that

(1) ξ(z, z′) = β(s′z, s′z′) defines a separated complete Q-category (Z, ξ),

(2) h ⊣ s′ : (Z, ξ) // (Y, β) in Q-Cat, and

(3) sz ⩽ s′z and β(sz, sz′) ⩽ β(s′z, s′z′) for all z, z′ ∈ Z.

Moreover, γ = ξs.
First, h

(∨
i∈I

yi
)
= h
(∨

i∈I
y′i
)

whenever hyi = hy′i for all i ∈ I. In this case, it follows from (3.xii) that

f tyi = shyi = shy′i = f ty′i .

The combination of Proposition 3.6 and (3.xii) then implies that

h
(∨

i∈I

yi
)
= h
(∨

i∈I

gtyi
)
= hg
(∨

i∈I

tyi
)
= h f
(∨

i∈I

tyi
)
= h
(∨

i∈I

f tyi
)

= h
(∨

i∈I

f ty′i
)
= h f
(∨

i∈I

ty′i
)
= hg
(∨

i∈I

ty′i
)
= h
(∨

i∈I

gty′i
)
= h
(∨

i∈I

y′i
)
.

Second, h(u ⊗ y) = h(u ⊗ y′) whenever hy = hy′ and u ∈ P{|y|}. In this case, by applying (3.xii) and Proposition
3.6 again, we deduce that

f ty = shy = shy′ = f ty′,

and consequently

h(u ⊗ y) = h(u ⊗ gty) = hg(u ⊗ ty) = h f (u ⊗ ty) = h(u ⊗ f ty)
= h(u ⊗ f ty′) = h f (u ⊗ ty′) = hg(u ⊗ ty′) = h(u ⊗ gty′) = h(u ⊗ y′).

as desired.
Finally, γ = ξs. Let z, z′ ∈ Z. On one hand, since γ is symmetric, from the functoriality of s and (3) we obtain that

γ(z, z′) ⩽ β(sz, sz′) ∧ β(sz′, sz)◦ ⩽ β(s′z, s′z′) ∧ β(s′z′, s′z)◦ = ξs(z, z′).

On the other hand,
ξs(z, z′) = βs(s′z, s′z′) ⩽ γ(hs′z, hs′z′) = γ(z, z′).

Step 2. (X, α) (Y, β)
f
//(X, α) (Y, β)

g
// (Y, β) (Z, ξ)h // is a coequalizer diagram in Q-Sup. Let h′ : (Y, β) //(Z′, ξ′) be a left

adjoint Q-functor between separated complete Q-categories satisfying h′ f = h′g. We claim that h′s′ : (Z, ξ) //(Z′, ξ′)
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is the unique Q-functor that makes the right triangle of the diagram

(X, α) (Y, β)
f

//(X, α) (Y, β)
g

// (Y, β) (Z, ξ)h //(Y, β)

(Z′, ξ′)

h′
((

(Z, ξ)

(Z′, ξ′)

h′ s′

��

commutative. On one hand, note that for any y, y′ ∈ Y , if hy = hy′, then

h′y = h′gty = h′ f ty = h′shy = h′shy′ = h′ f ty′ = h′gty′ = h′y′,

which in conjunction with Proposition 3.6 implies that

h′s′hy = h′
(∨
{y′ ∈ Y | hy′ = hy}

)
=
∨
{h′y′ | y′ ∈ Y, hy′ = hy} = h′y

for all y ∈ Y; that is, the right triangle of the above diagram is commutative. On the other hand, if h′′ : (Z, ξ) //(Z′, ξ′)
satisfies h′′h = h′, then

h′′ = h′′hs′ = h′s′.

It remains to show that h′s′ : (Z, γ) // (Z′, γ′) is a left adjoint in Q-Cat. To this end, note that h′ has a right adjoint
t′ : (Z′, ξ′) // (Y, β) in Q-Cat. Since

h′s′ht′ = h′t′ ⩽ 1Z′ and ht′h′s′ ⩾ hs′ = 1Z ,

we conclude that h′s′ ⊣ ht′, as desired.
Step 3. For the uniqueness of the lifting of (Z, γ) to a separated complete Q-category, suppose that (Z, η) is another

separated complete Q-category such that

(X, α) (Y, β)
f
//(X, α) (Y, β)

g
// (Y, β) (Z, η)h //

is a coequalizer diagram in Q-Sup. Then there exists a unique left adjoint Q-functor k : (Z, η) // (Z, ξ) that makes
the right triangle of the diagram

(X, α) (Y, β)
f

//(X, α) (Y, β)
g

// (Y, β) (Z, η)h //(Y, β)

(Z, ξ)
h

((

(Z, η)

(Z, ξ)

k
��

commutative; that is, kh = h. Thus, by (3.xii) it is easy to see that

kz = khsz = hsz = z

for all z ∈ Z, which forces k = 1Z . So, the identity map 1Z : (Z, η) // (Z, ξ) is a left adjoint Q-functor, whose right
adjoint must be given by 1Z : (Z, ξ) // (Z, η). Hence, the Q-functoriality of 1Z on both sides forces ξ(z, z′) = η(z, z′)
for all z, z′ ∈ Z, which completes the proof.

Corollary 3.11. The Eilenberg-Moore category Q-SymCatPs is isomorphic to Q-Sup. Hence, Q-Sup is strictly
monadic over Q-SymCat.
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4. The powerset monad on quantale-valued sets

A (unital) quantale [15, 19] is exactly a one-object quantaloid. Throughout this section, we let

Q = (Q,&, k, ◦)

denote an involutive quantale. Explicitly:

• Q is a complete lattice (with a top element ⊤ and a bottom element ⊥).

• (Q,&, k) is a monoid, such that the multiplication & preserves joins on both sides.

• The left and right implications and induced by the multiplication are denoted by / and \, respectively, which
satisfy

p & q ⩽ r ⇐⇒ p ⩽ r / q ⇐⇒ q ⩽ p \ r

for all p, q, r ∈ Q.

• Q is equipped with an involution, i.e., a map (−)◦ : Q // Q such that

k◦ = k, q◦◦ = q, (p & q)◦ = q◦ & p◦ and
(∨

i∈I

qi

)◦
=
∨
i∈I

q◦i

for all p, q, qi ∈ Q.

From Q we may construct a quantaloid D∗(Q) [9], given by the following data:

• Objects of D∗(Q) are hermitian (also self-adjoint) elements of Q; that is, q ∈ Q satisfying q◦ = q.

• Given hermitian elements p, q ∈ Q, D∗(Q)(p, q) consists of elements d ∈ Q satisfying

d ⩽ p ∧ q and (d / p) & p = d = q & (q \ d). (4.i)

• The composition of d ∈ D∗(Q)(p, q) and e ∈ D∗(Q)(q, r) is given by

e ◦ d := (e / q) & d = e & (q \ d). (4.ii)

• The identity morphism on q ∈ Q is q itself.

• Each hom-set D∗(Q)(p, q) is equipped with the order inherited from Q.

D∗(Q) is obviously an involutive quantaloid with the involution lifted from Q. From the definition we see that a
D∗(Q)-category consists of a set X, a map |-| : X // Q and a map α : X × X // Q such that

(1) α(x, y) ⩽ |x| ∧ |y|,

(2) (α(x, y) / |x|) & |x| = α(x, y) = |y| & (|y| \ α(x, y)),

(3) |x| ⩽ α(x, x),

(4) (α(y, z) / |y|) & α(x, y) = α(y, z) & (|y| \ α(x, y)) ⩽ α(x, z)

for all x, y, z ∈ X, where (1) and (2) follows from α(x, y) ∈ D∗(Q)(|x|, |y|). Note that the combination of (1) and (3)
forces

α(x, x) = |x|

for all x ∈ X, and thus a D∗(Q)-category is exactly given by a map α : X × X // Q such that

(S1) α(x, y) ⩽ α(x, x) ∧ α(y, y),
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(S2) (α(x, y) / α(x, x)) & α(x, x) = α(x, y) = α(y, y) & (α(y, y) \ α(x, y)),

(S3) (α(y, z) / α(y, y)) & α(x, y) = α(y, z) & (α(y, y) \ α(x, y)) ⩽ α(x, z)

for all x, y, z ∈ X, and it is symmetric if

(S4) α(x, y) = α(y, x)◦

for all x, y ∈ X.

Definition 4.1. (See [9].) A Q-set is a symmetric D∗(Q)-category; that is, a set X equipped with a map α : X×X //Q
satisfying (S1)–(S4).

Remark 4.2. The notion of D∗(Q) here is slightly different from [12]. The quantaloid D∗(Q) in [12] has all elements
of Q as its objects, while in this paper we restrict the objects of D∗(Q) to hermitian elements of Q. Nevertheless, as
[12, Remark 4.1] reveals, it makes no difference when we only deal with symmetric D∗(Q)-categories.

Remark 4.3. A Q-set may be viewed as a set X equipped with a Q-valued equality (or Q-valued similarity) α [9, 12].
The value α(x, y) is interpreted as the extent of x being equal to y, and α(x, x) represents the extent of existence of x
(since every entity is supposed to be equal to itself). Therefore:

• (S1) says that x is equal to y only if both x and y exist.

• The first equality of (S2) says that x is equal to y if, and only if, x exists and its existence forces x being equal
to y.

• The first inequality of (S3) says that if x is equal to y, and the existence of y forces y being equal to z, then x is
equal to z.

• (S4) says that if x is equal to y, then y is equal to x.

Example 4.4. Some important examples of Q-sets are listed below:

(1) If Q = 2, the two-element Boolean algebra, then a 2-set (X, α) is just an equivalence relation on a subset of X.
Explicitly,

{(x, y) ∈ X × X | α(x, y) = 1}

is an equivalence relation on the subset {x ∈ X | α(x, x) = 1} of X, whose elements are supposed to “exist”. In
particular, (X, α) reduces to a (crisp) set if

• (X, α) is separated, i.e., α(x, y) = 1 if and only if x = y;

• (X, α) is global, i.e., α(x, x) = 1 for all x ∈ X.

(2) If Q is a frame, then Q-sets are precisely Ω-sets in the sense of Fourman-Scott [2]. In particular, given a
topological space X, let

PC(X) := { f | f is a real-valued continuous map on an open subset D( f ) ⊆ X}.

For any f , g ∈ PC(X), let
α( f , g) := Int{x ∈ D( f ) ∩ D(g) | f (x) = g(x)},

i.e., the interior of the subset of X consisting of elements on which f and g coincide. Then (PC(X), α) is an
O(X)-set, where O(X) is the frame of open subsets of X.

(3) Let Q be the Lawvere quantale [0,∞] = ([0,∞],+, 0) [13]. Then [0,∞]-sets are symmetric partial metric
spaces; that is, sets X equipped with a map

α : X × X // [0,∞]
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such that

α(x, x) ∨ α(y, y) ⩽ α(x, y), α(x, z) ⩽ α(y, z) − α(y, y) + α(x, y) and α(x, y) = α(y, x)

for all x, y, z ∈ X. In particular, let
I := {[a, b] | 0 ⩽ a < b ⩽ ∞}

be the set of closed intervals contained in [0,∞]. Then

α([a, b], [c, d]) = b ∨ d − a ∧ c

defines a symmetric partial metric space (I, α).

We denote by
Q-Set := D∗(Q)-SymCat

the category of Q-sets, whose morphisms are maps f : (X, α) // (Y, β) between Q-sets satisfying

α(x, x) = β( f x, f x) and α(x, x′) ⩽ β( f x, f x′) (4.iii)

for all x, x′ ∈ X. Following the interpretations of Remark 4.3, (4.iii) says that x exists if and only if f x exists, and if x
is equal to x′, then f x is equal to f x′.

Now, let us elaborate how the monad
Ps = (Ps, y, supP) (4.iv)

given by (3.v) on the category D∗(Q)-SymCat describes the Q-powerset monad on Q-Set.
First of all, for each Q-set (X, α),

Ps(X, α)

is the Q-powerset of (X, α), whose elements are D∗(Q)-distributors µ : (X, α) //◦ {q} (q ∈ Q); that is, maps µ : X //Q
such that

(P1) µ(x) ⩽ α(x, x) ∧ q,

(P2) (µ(x) / α(x, x)) & α(x, x) = µ(x) = q & (q \ µ(x)),

(P3) (µ(y) / α(y, y)) & α(x, y) = µ(y) & (α(y, y) \ α(x, y)) ⩽ µ(x)

for all x, y ∈ X.

Definition 4.5. A potential Q-subset of a Q-set (X, α) is a pair (µ, q), where µ : X //Q and q ∈ Q satisfies (P1)–(P3).

So, the Q-powerset of a Q-set consists of its potential Q-subsets, which can be understood as follows:

Remark 4.6. In a potential Q-subset (µ, q) of a Q-set (X, α):

• the value µ(x) represents the degree of x being in (µ, q), and

• q represents the degree of (µ, q) being a Q-subset of (X, α).

Therefore:

• (P1) says that x is in (µ, q) only if x exists and (µ, q) is a subset of (X, α).

• The first equality of (P2) says that x is in (µ, q) if, and only if, x exists and its existence forces x being in (µ, q).
The second equality of (P2) says that x is in (µ, q) if, and only if, (µ, q) is a subset of (X, α) and this fact forces
x being in (µ, q).

• The first inequality of (P3) says that if x is equal to y, and the existence of y forces y being in (µ, q), then x is in
(µ, q).
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Example 4.7. For the examples listed in 4.4:

(1) A potential 2-subset of a 2-set (X, α) is either (∅, 0) or (U, 1), where U is a subset of A := {x ∈ X | α(x, x) = 1}
that is a union of some equivalence classes of the corresponding equivalence relation on A; in other words, if
y ∈ U and x is equivalent to y, then x ∈ U. In particular, if (X, α) is separated, then U can be any subset of A.

(2) Let (PC(X), α) be the O(X)-set considered in Example 4.4(2). A potential O(X)-subset of (PC(X), α) is a pair
(µ,V), where µ is a map µ : PC(X) //O(X) such that

α( f , g) ∩ Int(µ(g) ∪ (X \ D(g))) = µ(g) ∩ Int(α( f , g) ∪ (X \ D(g))) ⊆ µ( f ) ⊆ D( f ) ∩ V

for all f , g ∈ PC(X), where X \ D(g) refers to the complement of the set D(g) in X.

(3) Let (X, α) be a symmetric partial metric space (see Example 4.4(3)). A potential [0,∞]-subset of (X, α) is pair
(µ, q), where µ is a map µ : X // [0,∞] such that

α(x, x) ∨ q ⩽ µ(x) ⩽ µ(y) + α(x, y) − α(y, y)

for all x, y ∈ X. In particular, a potential [0,∞]-subset of the symmetric partial metric space (I, α) is a pair
(µ, q), where µ is a map µ : I // [0,∞] such that

(b − a) ∨ q ⩽ µ([a, b]) ⩽ µ([c, d]) + b ∨ d − a ∧ c − d + c

for all [a, b], [c, d] ∈ I.

Once the notion of potential Q-subset is made clear, it is straightforward to interpret the components of the Q-
powerset monad (4.iv) as the Q-valued version of (1.ii), (1.iii) and (1.iv):

• The functor Ps sends a map f : (X, α) // (Y, β) in Q-Set to the map

f→ : Ps(X, α) // Ps(Y, β)

between the corresponding Q-powersets. Explicitly, for each potential Q-subset (µ, q) of (X, α),

f→(µ, q) := (λ, q)

is a potential Q-subset of (Y, β), with

λ(y) =
∨
x∈X

(µ(x) / α(x, x)) & β(y, f x) (4.v)

for all y ∈ Y . Obviously, (4.v) says that y is in (λ, q) if, and only if, there exists x such that x is in (µ, q) and y is
equal to f x.

• The unit of (4.iv) is given by

y(X,α) : (X, α) // Ps(X, α), x 7→ (α(−, x), α(x, x)),

where (α(−, x), α(x, x)) of (X, α) is the potential Q-subset of (X, α) such that

– the degree of (α(−, x), α(x, x)) being a Q-subset of (X, α) is the same as the extent of existence of x, and

– y is in (α(−, x), α(x, x)) if, and only if, y is equal to x.

• By Remark 3.7, the multiplication of (4.iv) is given by

sup(X,α) : PsPs(X, α) // Ps(X, α), (Φ, p) 7→
( ∨

(µ,q)∈Ps(X,α)

(Φ(µ, q) / q) & µ, p
)
,

which means that x is in sup(X,α)(Φ, p) if, and only if, there exists a potential Q-subset (µ, q) of (X, α) such that
(µ, q) is in (Φ, p) and x is in (µ, q).
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